Gotowa bibliografia na temat „Hermitian cusp forms”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hermitian cusp forms”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Hermitian cusp forms"

1

Yamana, Shunsuke. "On the lifting of Hilbert cusp forms to Hilbert-Hermitian cusp forms". Transactions of the American Mathematical Society 373, nr 8 (28.05.2020): 5395–438. http://dx.doi.org/10.1090/tran/8096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

BERGER, TOBIAS, i KRZYSZTOF KLOSIN. "A p-ADIC HERMITIAN MAASS LIFT". Glasgow Mathematical Journal 61, nr 1 (17.04.2018): 85–114. http://dx.doi.org/10.1017/s0017089518000071.

Pełny tekst źródła
Streszczenie:
AbstractFor K, an imaginary quadratic field with discriminant −DK, and associated quadratic Galois character χK, Kojima, Gritsenko and Krieg studied a Hermitian Maass lift of elliptic modular cusp forms of level DK and nebentypus χK via Hermitian Jacobi forms to Hermitian modular forms of level one for the unitary group U(2, 2) split over K. We generalize this (under certain conditions on K and p) to the case of p-oldforms of level pDK and character χK. To do this, we define an appropriate Hermitian Maass space for general level and prove that it is isomorphic to the space of special Hermitian Jacobi forms. We then show how to adapt this construction to lift a Hida family of modular forms to a p-adic analytic family of automorphic forms in the Maass space of level p.
Style APA, Harvard, Vancouver, ISO itp.
3

Eie, Min King. "A dimension formula for Hermitian modular cusp forms of degree two". Transactions of the American Mathematical Society 300, nr 1 (1.01.1987): 61. http://dx.doi.org/10.1090/s0002-9947-1987-0871665-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kumar, Arvind, i B. Ramakrishnan. "Estimates for Fourier coefficients of Hermitian cusp forms of degree two". Acta Arithmetica 183, nr 3 (2018): 257–75. http://dx.doi.org/10.4064/aa170301-26-10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gritsenko, V. A. "Construction of hermitian modular forms of genus 2 from cusp forms of genus 1". Journal of Soviet Mathematics 38, nr 4 (sierpień 1987): 2065–78. http://dx.doi.org/10.1007/bf01474440.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kikuta, Toshiyuki, i Yoshinori Mizuno. "On p -adic Hermitian Eisenstein series and p -adic Siegel cusp forms". Journal of Number Theory 132, nr 9 (wrzesień 2012): 1949–61. http://dx.doi.org/10.1016/j.jnt.2012.03.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Berman, Robert J., i Gerard Freixas i Montplet. "An arithmetic Hilbert–Samuel theorem for singular hermitian line bundles and cusp forms". Compositio Mathematica 150, nr 10 (19.08.2014): 1703–28. http://dx.doi.org/10.1112/s0010437x14007325.

Pełny tekst źródła
Streszczenie:
AbstractWe prove arithmetic Hilbert–Samuel type theorems for semi-positive singular hermitian line bundles of finite height. This includes the log-singular metrics of Burgos–Kramer–Kühn. The results apply in particular to line bundles of modular forms on some non-compact Shimura varieties. As an example, we treat the case of Hilbert modular surfaces, establishing an arithmetic analogue of the classical result expressing the dimensions of spaces of cusp forms in terms of special values of Dedekind zeta functions.
Style APA, Harvard, Vancouver, ISO itp.
8

Anamby, Pramath, i Soumya Das. "Distinguishing Hermitian cusp forms of degree 2 by a certain subset of all Fourier coefficients". Publicacions Matemàtiques 63 (1.01.2019): 307–41. http://dx.doi.org/10.5565/publmat6311911.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Eie, Min King. "Contributions from conjugacy classes of regular elliptic elements in Hermitian modular groups to the dimension formula of Hermitian modular cusp forms". Transactions of the American Mathematical Society 294, nr 2 (1.02.1986): 635. http://dx.doi.org/10.1090/s0002-9947-1986-0825727-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Matthes, Roland, i Yoshinori Mizuno. "Koecher-Maass series associated to Hermitian modular forms of degree 2 and a characterization of cusp forms by the Hecke bound". Journal of Mathematical Analysis and Applications 509, nr 1 (maj 2022): 125904. http://dx.doi.org/10.1016/j.jmaa.2021.125904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Hermitian cusp forms"

1

Pramath, A. V. "Fourier coeffcients of modular forms and mass of pullbacks of Saito–Kurokawa lifts". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5101.

Pełny tekst źródła
Streszczenie:
In the first part of the talk we would discuss a topic about the Fourier coefficients of modular forms. Namely, we would focus on the question of distinguishing two modular forms by certain ‘arithmetically interesting’ Fourier coefficients. These type of results are known as ‘recognition results’ and have been a useful theme in the theory of modular forms, having lots of applications. As an example we would recall the Sturm’s bound (which applies quite generally to a wide class of modular forms), which says that two modular forms are equal if (in a suitable sense) their ‘first’ few Fourier coefficients agree. As another example we would mention the classical multiplicity-one result for elliptic newforms of integral weight, which says that if two such forms f1, f2 have the same eigenvalues of the p-th Hecke operator Tp for almost all primes p, then f1 = f2. The heart of the first part of the talk would concentrate on Hermitian cusp forms of degree 2. These objects have a Fourier expansion indexed by certain matrices of size 2 over an imaginary quadratic field. We show that Hermitian cusp forms of weight k for the Hermitian modular group of degree 2 are determined by their Fourier coe cients indexed by matrices whose determinants are essentially square–free. Moreover, we give a quantitative version of the above result. is is a consequence of the corresponding results for integral weight elliptic cusp forms, which will also be discussed. is result was established by A. Saha in the context of Siegel modular forms – and played a crucial role (among others) in the automorphic transfer from GSp(4) to GL(4). We expect similar applications. We also discuss few results on the square–free Fourier coefficients of elliptic cusp forms. In the second part of the talk we introduce Saito–Kurokawa lifts: these are certain Siegel modular forms li ed from classical elliptic modular forms on the upper half plane H. If g is such an elliptic modular form of integral weight k on SL(2, Z) then we consider its Saito–Kurokawa li Fg and certain ‘restricted’ L2-norm N(Fg ) (which we refer to as the mass) associated with it. Pullback of a Siegel modular form F (( z z ¨ )) to H × H is its restriction to z = 0, which we denote by F |z=0. Conjectures of Ikeda relate such pullbacks to central values of L-functions. In fact, when a Siegel modular form arises as a Saito–Kurokawa li (say F = Fg ), results of Ichino relate the pullbacks to the central values of certain GL(3)×GL(2) L-functions. Moreover, it has been observed that comparison of the (normalized) norm of Fg with the norm of its pullback provides a measure of concentration of Fg along z = 0. We use the amplification method to improve the currently known bound for N(Fg ).
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii