Artykuły w czasopismach na temat „Heat transfer”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Heat transfer.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Heat transfer”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

SARADA, Yukihiro, Ryosuke MATUMOTO i Mamoru OZAWA. "A301 HEAT TRANSFER CHARACTERISTICS OF INTERNALLY FINNED TUBE(Heat Transfer-1)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.3 (2009): _3–1_—_3–6_. http://dx.doi.org/10.1299/jsmeicope.2009.3._3-1_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

EIAMSA-ARD, Smith, K. WONGCHAREE, S. RATTANAWONG, Petpices EIAMSA-ARD, M. PIMSARN i Chinaruk THIANPONG. "A306 TURBULENT HEAT TRANSFER THROUGH A HEAT EXCHANGER WITH POROUS TWISTED TAPE INSERTS(Heat Transfer-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.3 (2009): _3–31_—_3–36_. http://dx.doi.org/10.1299/jsmeicope.2009.3._3-31_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Morita, Yoshiki, i Yasuo Koizumi. "ICONE19-43109 STUDY ON BOILING HEAT TRANSFER OF MINI-HEAT TRANSFER SURFACE IN NARROW CHANNELS". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

NUTHONG, Watcharin, Smith EIAMSA-ARD, Kwanchai NANAN, Petpices EIAMSA-ARD i C. THIANPONG. "A303 HEAT TRANSFER ENHANCEMENT IN A RECTANGULAR CHANNEL WITH TWISTED TAPE INSERTS(Heat Transfer-1)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.3 (2009): _3–13_—_3–17_. http://dx.doi.org/10.1299/jsmeicope.2009.3._3-13_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pathak, Shriram, i Amit Kaimkuriya. "Heat Transfer Augmentation in Heat Exchanger using Nanofluid: A Review". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 1939–44. http://dx.doi.org/10.31142/ijtsrd11421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rao, H. V. "Isentropic recuperative heat exchanger with regenerative work transfer". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214, nr 4 (1.04.2000): 609–18. http://dx.doi.org/10.1243/0954406001523948.

Pełny tekst źródła
Streszczenie:
A counter-flow heat exchanger is considered to be the ideal method for recuperative heat transfer between hot and cold fluid streams. In this paper the concept of an isentropic heat exchanger with regenerative work transfer is developed. The overall effect is a mutual heat transfer between the two fluid streams without any net external heat or work transfers. The effectiveness for an isentropic heat exchanger with regenerative work transfer is derived for the case of fluid streams with constant specific heats and it is shown that it is greater than unity. The ‘isentropic effectiveness’ of a heat exchanger is defined. The relationship between the entropy generation and effectiveness for the traditional heat exchanger is also examined and compared with that of the isentropic heat exchanger. The practical realization of isentropic operation of a heat exchanger and its possible application are briefly considered.
Style APA, Harvard, Vancouver, ISO itp.
7

Lochan, Rajeev, Rajeev Lochan, Hari Mohan Sharma i Deepak Agarwal. "Heat Transfer Improvement in Heat Exchanger using Porous Medium: a Review". International Journal of Innovative Research in Engineering & Management 3, nr 6 (17.11.2016): 468–70. http://dx.doi.org/10.21276/ijirem.2016.3.6.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alam, Irsad, i Prof Rohit Soni. "Techniques for Heat Transfer Augmentation in A Heat Exchanger: A Review". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 2630–35. http://dx.doi.org/10.31142/ijtsrd12764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

TAKEDA, Tetsuaki, i Koichi ICHIMIYA. "A305 EXPERIMENTAL STUDY ON METHOD FOR HEAT TRANSFER ENHANCEMENT USING POROUS MATERIAL WITH HIGH POROSITY(Heat Transfer-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.3 (2009): _3–25_—_3–30_. http://dx.doi.org/10.1299/jsmeicope.2009.3._3-25_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Markatos, N. C. "Heat transfer". International Journal of Heat and Mass Transfer 33, nr 5 (maj 1990): 1039–40. http://dx.doi.org/10.1016/0017-9310(90)90088-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Al-Shemmeri, T. T. "Heat transfer". Journal of Mechanical Working Technology 16, nr 2 (kwiecień 1988): 226–27. http://dx.doi.org/10.1016/0378-3804(88)90173-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Owen, J. M. "Heat transfer". International Journal of Heat and Mass Transfer 28, nr 1 (styczeń 1985): 315–16. http://dx.doi.org/10.1016/0017-9310(85)90036-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Fried, E. "Heat transfer". International Journal of Heat and Fluid Flow 6, nr 1 (marzec 1985): 15. http://dx.doi.org/10.1016/0142-727x(85)90025-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

AIHARA, Toshio. "Rapid Transient Heat Transfer and Heat-Transfer Control." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 30, nr 7 (1995): 316–23. http://dx.doi.org/10.2221/jcsj.30.316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Aihara, Toshio. "Rapid Transient Heat Transfer and Heat-Transfer Control". Journal of the Society of Mechanical Engineers 96, nr 892 (1993): 219–23. http://dx.doi.org/10.1299/jsmemag.96.892_219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Pathan, Nadeem, i Sanjay Mitkari. "Heat Transfer Enhancement by Using Dimple Surface". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 2267–70. http://dx.doi.org/10.31142/ijtsrd12739.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ma, L. X., i K. Lu. "Experimental study on heat transfer resistance of condensation heat transfer in high efficiency heat transfer". IOP Conference Series: Earth and Environmental Science 354 (25.10.2019): 012057. http://dx.doi.org/10.1088/1755-1315/354/1/012057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Muhammad Hazeer Khiralsaleh Mohamad Rohaizan, Nor Azwadi Che Sidik i Kamyar Shameli. "Numerical Analysis of Heat Transfer in Microchannel Heat Transfer in Microchannel Heat Sink using Flow Disruption". Journal of Advanced Research Design 106, nr 1 (15.04.2024): 1–14. http://dx.doi.org/10.37934/ard.106.1.114.

Pełny tekst źródła
Streszczenie:
Microchannel heat sink is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature at optimum levels. It is widely used in computers that are used to cool central processing units or graphic processors. In order to achieve great heat transfer performance of microchannel heat sink, passive method are used in this research particularly the flow disruption and secondary channel. A three-dimensional computational fluid dynamic (CFD) was conducted to study the characteristic of fluid flow and heat transfer in proposed design of microchannel heat sink with secondary channel and rectangular ribs (MCHS-SCRR) This research is to develop and optimize the heat transfer performance in a microchannel heat sinks to get high Nusselt Number low friction factor and high performance factor by optimizing the geometry design a simulation using certain software such as SOLIDWORKS and ANSYS. The result compared to previous research in this field of study.
Style APA, Harvard, Vancouver, ISO itp.
19

Seo, Jae-Hyeong, Yu-Ma Bang, Lee-Soo Seo i Moo-Yeon Lee. "Heat transfer characteristics of the heat pipe using simplified heat transfer model". Journal of the Korea Academia-Industrial cooperation Society 16, nr 1 (31.01.2015): 15–20. http://dx.doi.org/10.5762/kais.2015.16.1.15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hosoi, Hideaki, Naoyuki Ishida, Naohisa Watahiki i Kazuaki Kitou. "ICONE23-1630 HEAT TRANSFER TESTS FOR PASSIVE WATER-COOLING SYSTEM : (2) STEAM FLOW DISTRIBUTION AND HEAT TRANSFER IN TUBE BUNDLE". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yuanyuan Fan, Yuanyuan Fan, Bing He Bing He, Jun Zhou Jun Zhou, Jituo Zheng Jituo Zheng, Shoujun Dai Shoujun Dai, Chun Zhao Chun Zhao, Yunrong Wei Yunrong Wei i Qihong Lou Qihong Lou. "Efficient heat transfer in high-power fiber lasers". Chinese Optics Letters 10, nr 11 (2012): 111401–4. http://dx.doi.org/10.3788/col201210.111401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

SAKAI, Itsuro, i Tadaaki MATSUHISA. "Heat Transfer Characteristics of Heat-Storage-Type Heat Transfer Elements for Gas Turbines". JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties 35, nr 1 (1992): 89–94. http://dx.doi.org/10.1299/jsmeb1988.35.1_89.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

SAKAI, Itsuro, i Tadaaki MATSUHISA. "Heat transfer characteristics of heat storage type heat transfer element for gas turbine." Transactions of the Japan Society of Mechanical Engineers Series B 56, nr 531 (1990): 3489–94. http://dx.doi.org/10.1299/kikaib.56.3489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Asianuaba, Ifeoma B. "Heat Transfer Augmentation". European Journal of Engineering Research and Science 5, nr 4 (25.04.2020): 475–78. http://dx.doi.org/10.24018/ejers.2020.5.4.1869.

Pełny tekst źródła
Streszczenie:
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
Style APA, Harvard, Vancouver, ISO itp.
25

Asianuaba, Ifeoma B. "Heat Transfer Augmentation". European Journal of Engineering and Technology Research 5, nr 4 (25.04.2020): 475–78. http://dx.doi.org/10.24018/ejeng.2020.5.4.1869.

Pełny tekst źródła
Streszczenie:
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
Style APA, Harvard, Vancouver, ISO itp.
26

Wilson, Teck A., i P. Weiss. "Heat-Transfer Basics". Science News 155, nr 1 (2.01.1999): 3. http://dx.doi.org/10.2307/4011193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Kihm, Kenneth D. "Heat Transfer Photogallery". Journal of Heat Transfer 126, nr 4 (1.08.2004): 493–506. http://dx.doi.org/10.1115/1.1778411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

LEPPERT, GEORGE. "BOILING HEAT TRANSFER". Journal of the American Society for Naval Engineers 73, nr 2 (18.03.2009): 331–40. http://dx.doi.org/10.1111/j.1559-3584.1961.tb03305.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lenert, Andrej, Youngsuk Nam i Evelyn N. Wang. "HEAT TRANSFER FLUIDS". Annual Review of Heat Transfer 15, nr 15 (2012): 93–129. http://dx.doi.org/10.1615/annualrevheattransfer.2012004122.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Avedisian, C. T. "Heat Transfer Gallery". Journal of Heat Transfer 119, nr 2 (1.05.1997): 201. http://dx.doi.org/10.1115/1.2824200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Avedisian, C. T. "Heat Transfer Gallery". Journal of Heat Transfer 120, nr 3 (1.08.1998): 538. http://dx.doi.org/10.1115/1.2824301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kihm, K. D. "Heat Transfer Photogallery". Journal of Heat Transfer 124, nr 4 (16.07.2002): 593–600. http://dx.doi.org/10.1115/1.1492840.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Jaluria, Y., i K. E. Torrance. "Computational Heat Transfer". Journal of Pressure Vessel Technology 109, nr 2 (1.05.1987): 262. http://dx.doi.org/10.1115/1.3264911.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Cuevas, Juan Carlos, i Francisco J. García-Vidal. "Radiative Heat Transfer". ACS Photonics 5, nr 10 (19.09.2018): 3896–915. http://dx.doi.org/10.1021/acsphotonics.8b01031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Kihm, Kenneth D. "Heat Transfer Photogallery". Journal of Heat Transfer 128, nr 8 (1.08.2006): 733. http://dx.doi.org/10.1115/1.2222251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kihm, Kenneth D. "Heat Transfer Photogallery". Journal of Heat Transfer 129, nr 8 (1.08.2007): 929. http://dx.doi.org/10.1115/1.2753553.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

English, M. J., i T. M. Hemmerling. "Heat transfer coefficient". European Journal of Anaesthesiology 25, nr 7 (lipiec 2008): 531–37. http://dx.doi.org/10.1017/s0265021508003931.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ramos, J. I. "Basic Heat Transfer". Applied Mathematical Modelling 14, nr 12 (grudzień 1990): 666. http://dx.doi.org/10.1016/0307-904x(90)90027-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Maidanik, Jury, SergeiV Vershinin, ValeryF Kholodov i Jury Dolgirev. "Heat transfer apparatus". Journal of Heat Recovery Systems 6, nr 1 (styczeń 1986): xi—xii. http://dx.doi.org/10.1016/0198-7593(86)90209-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Babus'Haq, Ramiz, i S. Douglas Probert. "Numerical heat transfer". Applied Energy 39, nr 2 (styczeń 1991): 177–78. http://dx.doi.org/10.1016/0306-2619(91)90030-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Babus'Haq, Ramiz, i Douglas Probert. "Radiation heat transfer". Applied Energy 42, nr 3 (styczeń 1992): 222–24. http://dx.doi.org/10.1016/0306-2619(92)90065-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Jaluria, Yogesh, i Satya N. Atluri. "Computational heat transfer". Computational Mechanics 14, nr 5 (sierpień 1994): 385–86. http://dx.doi.org/10.1007/bf00377593.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Rose, J. W. "Condensation heat transfer". Heat and Mass Transfer 35, nr 6 (17.12.1999): 479–85. http://dx.doi.org/10.1007/s002310050351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Dhir, V. K. "BOILING HEAT TRANSFER". Annual Review of Fluid Mechanics 30, nr 1 (styczeń 1998): 365–401. http://dx.doi.org/10.1146/annurev.fluid.30.1.365.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kihm, Kenneth D. "Heat Transfer Photogallery". Journal of Heat Transfer 127, nr 8 (1.08.2005): 798. http://dx.doi.org/10.1115/1.1992519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Markatos, N. C. "Convective heat transfer". International Journal of Heat and Mass Transfer 28, nr 12 (grudzień 1985): 2393–94. http://dx.doi.org/10.1016/0017-9310(85)90062-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kihm, K. D. "Heat Transfer Gallery". Journal of Heat Transfer 122, nr 3 (1.08.2000): 421. http://dx.doi.org/10.1115/1.1289628.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kihm, K. D. "Heat Transfer Photogallery". Journal of Heat Transfer 123, nr 4 (1.08.2001): 617. http://dx.doi.org/10.1115/1.1385888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Mujumdar, Arun s., i Mainul Hasan. "NUMERICAL HEAT TRANSFER". Drying Technology 3, nr 4 (listopad 1985): 615–19. http://dx.doi.org/10.1080/07373938508916301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

CONSTERDINE, K. "Heat Transfer Printing". Review of Progress in Coloration and Related Topics 7, nr 1 (23.10.2008): 34–42. http://dx.doi.org/10.1111/j.1478-4408.1976.tb00231.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii