Artykuły w czasopismach na temat „Heat transfer reduction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Heat transfer reduction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Usui, Hiromoto, i Takashi Saeki. "Drag reduction and heat transfer reduction by cationic surfactants." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 26, nr 1 (1993): 103–6. http://dx.doi.org/10.1252/jcej.26.103.
Pełny tekst źródłaFLEISCHMAN, G. J., C. BATOR, R. MERKER i S. E. KELLER. "Hot Water Immersion To Eliminate Escherichia coli O157:H7 on the Surface of Whole Apples: Thermal Effects and Efficacy". Journal of Food Protection 64, nr 4 (1.04.2001): 451–55. http://dx.doi.org/10.4315/0362-028x-64.4.451.
Pełny tekst źródłaAguilar, G., K. Gasljevic i E. F. Matthys. "Coupling Between Heat and Momentum Transfer Mechanisms for Drag-Reducing Polymer and Surfactant Solutions". Journal of Heat Transfer 121, nr 4 (1.11.1999): 796–802. http://dx.doi.org/10.1115/1.2826068.
Pełny tekst źródłaŞahin, Ahmet Z., Davut Kavranoğlu i Maamar Bettayeb. "Model reduction in numerical heat transfer problems". Applied Mathematics and Computation 69, nr 2-3 (maj 1995): 209–25. http://dx.doi.org/10.1016/0096-3003(94)00128-q.
Pełny tekst źródłaJordan, L. A., i D. van Vuuren. "Heat-constrained modelling of calcium sulphate reduction". Journal of the Southern African Institute of Mining and Metallurgy 122, nr 10 (4.11.2022): 1–10. http://dx.doi.org/10.17159/2411-9717/1530/2022.
Pełny tekst źródłaZhu, Zhangyu, Juan Li, Hao Peng i Dongren Liu. "Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction". Micromachines 12, nr 6 (3.06.2021): 656. http://dx.doi.org/10.3390/mi12060656.
Pełny tekst źródłaTrigui, N., i Y. G. Guezennec. "Heat transfer reduction in manipulated turbulent boundary layers". International Journal of Heat and Fluid Flow 11, nr 3 (wrzesień 1990): 214–19. http://dx.doi.org/10.1016/0142-727x(90)90039-e.
Pełny tekst źródłaLiu, Lei, Qiu Yue Guo, Xin Feng Guo, Hui Qing Fan i Zhu Hai Zhong. "The Effect of Drag-Reducing Polymer on Heat Transfer in Gas-Liquid Two-Phase Flow". Advanced Materials Research 383-390 (listopad 2011): 856–61. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.856.
Pełny tekst źródłaBaldauf, S., M. Scheurlen, A. Schulz i S. Wittig. "Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions". Journal of Turbomachinery 124, nr 4 (1.10.2002): 699–709. http://dx.doi.org/10.1115/1.1505848.
Pełny tekst źródłavon Wolfersdorf, J., R. Hoecker i C. Hirsch. "A Data Reduction Procedure for Transient Heat Transfer Measurements in Long Internal Cooling Channels". Journal of Heat Transfer 120, nr 2 (1.05.1998): 314–21. http://dx.doi.org/10.1115/1.2824248.
Pełny tekst źródłaSaha, A. K., Sumanta Acharya, Ron Bunker i Chander Prakash. "Blade Tip Leakage Flow and Heat Transfer with Pressure-Side Winglet". International Journal of Rotating Machinery 2006 (2006): 1–15. http://dx.doi.org/10.1155/ijrm/2006/17079.
Pełny tekst źródłaTanda, G. "Natural Convection Heat Transfer From a Staggered Vertical Plate Array". Journal of Heat Transfer 115, nr 4 (1.11.1993): 938–45. http://dx.doi.org/10.1115/1.2911390.
Pełny tekst źródłaKlemeš, Jiří Jaromír, i Petar Sabev Varbanov. "Heat transfer improvement, energy saving, management and pollution reduction". Energy 162 (listopad 2018): 267–71. http://dx.doi.org/10.1016/j.energy.2018.08.014.
Pełny tekst źródłaLewandowski, Witold M., i Henryk Biezk. "Reduction of convective heat transfer losses from flat surfaces". Chemical Engineering and Processing: Process Intensification 31, nr 6 (grudzień 1992): 331–35. http://dx.doi.org/10.1016/0255-2701(92)87023-a.
Pełny tekst źródłaMastrullo, Rita, i Alfonso William Mauro. "Peripheral Heat Transfer Coefficient during Flow Boiling: Comparison between 2-D and 1-D Data Reduction and Discussion about Their Applicability". Energies 12, nr 23 (25.11.2019): 4483. http://dx.doi.org/10.3390/en12234483.
Pełny tekst źródłaHARUKI, Naoto, Akihiko HORIBE i Motohiro TORIGOE. "1307 Effect of Heat Transfer Surface on Flow Drag and Heat Transfer Reduction Effect of Surfactant Solution". Proceedings of Conference of Chugoku-Shikoku Branch 2013.51 (2013): _1307–1_—_1307–2_. http://dx.doi.org/10.1299/jsmecs.2013.51._1307-1_.
Pełny tekst źródłaSubramaniam, V., T. Dbouk i J. L. Harion. "Topology optimization of conjugate heat transfer systems: A competition between heat transfer enhancement and pressure drop reduction". International Journal of Heat and Fluid Flow 75 (luty 2019): 165–84. http://dx.doi.org/10.1016/j.ijheatfluidflow.2019.01.002.
Pełny tekst źródłaLee, Jaehwan, Dongmin Kim, Jeongmin Mun i Seokho Kim. "Heat-Transfer Characteristics of a Cryogenic Loop Heat Pipe for Space Applications". Energies 13, nr 7 (2.04.2020): 1616. http://dx.doi.org/10.3390/en13071616.
Pełny tekst źródłaWei, Jinjia, Yasuo Kawaguchi, Bo Yu i Ziping Feng. "Rheological Characteristics and Turbulent Friction Drag and Heat Transfer Reductions of a Very Dilute Cationic Surfactant Solution". Journal of Heat Transfer 128, nr 10 (24.02.2006): 977–83. http://dx.doi.org/10.1115/1.2345422.
Pełny tekst źródłaPutradianto, Ristiyan Ragil, i Allen Haryanto Lukmana. "Heat Loss and Cost Reduction of Insulation Materials on Geothermal Pipes". Journal of Petroleum and Geothermal Technology 4, nr 1 (17.05.2023): 58. http://dx.doi.org/10.31315/jpgt.v4i1.9706.
Pełny tekst źródłaSeem, J. E., S. A. Klein, W. A. Beckman i J. W. Mitchell. "Model Reduction of Transfer Functions Using a Dominant Root Method". Journal of Heat Transfer 112, nr 3 (1.08.1990): 547–54. http://dx.doi.org/10.1115/1.2910421.
Pełny tekst źródłaWang, ZhenHuan, XinXue Zhao i YoungChul Kwon. "Experimental Study on Heat Transfer Performance of White Smoke Reduction Heat Exchange System". IOP Conference Series: Earth and Environmental Science 446 (21.03.2020): 022043. http://dx.doi.org/10.1088/1755-1315/446/2/022043.
Pełny tekst źródłaTurner, J. C. R. "On the reduction by heat transfer of mass transfer from an evaporating liquid". Chemical Engineering Science 44, nr 10 (1989): 2223–24. http://dx.doi.org/10.1016/0009-2509(89)85156-5.
Pełny tekst źródłaSchneider, Brandon, Ali Koşar, Chih-Jung Kuo, Chandan Mishra, Gregory S. Cole, Robert P. Scaringe i Yoav Peles. "Cavitation Enhanced Heat Transfer in Microchannels". Journal of Heat Transfer 128, nr 12 (21.02.2006): 1293–301. http://dx.doi.org/10.1115/1.2349505.
Pełny tekst źródłaLavine, A. S., i C. Bai. "An Analysis of Heat Transfer in Josephson Junction Devices". Journal of Heat Transfer 113, nr 3 (1.08.1991): 535–43. http://dx.doi.org/10.1115/1.2910596.
Pełny tekst źródłaWu, C. H., J. H. Zeng, G. R. Wu, X. Xie i M. Zhang. "A new method for determination of the theoretical reduction amount for wide-thick slab during the mechanical reduction process". Journal of Mining and Metallurgy, Section B: Metallurgy 57, nr 1 (2021): 125–36. http://dx.doi.org/10.2298/jmmb200622010w.
Pełny tekst źródłaLiu, Chenghong, Xueyong Ding, Hegong Liu, Xinlin Yan, Chao Dong i Jia Wang. "Numerical Analysis on Characteristics of Reduction Process within a Pre-Reduction Rotary Kiln". Metals 11, nr 8 (25.07.2021): 1180. http://dx.doi.org/10.3390/met11081180.
Pełny tekst źródłaZhang, Yu, Zhentao Zhang, Junling Yang, Yunkai Yue i Huafu Zhang. "A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer". Nanomaterials 12, nr 1 (23.12.2021): 44. http://dx.doi.org/10.3390/nano12010044.
Pełny tekst źródłaSheikhzadeh, Ghanbar Ali, S. H. Musavi i N. Sadoughi. "Effect of a Shield on Mixed Convection in a Rectangular Enclosure with Moving Cold Sidewalls and a Heat Source on the Bottom Wall". Defect and Diffusion Forum 297-301 (kwiecień 2010): 584–89. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.584.
Pełny tekst źródła왕쩐후안 i 권영철. "Experimental Study on Heat Transfer Performance of White Heat Reduction Heat Exchange System under Winter Conditions". Journal of the Korean Society of Mechanical Technology 20, nr 3 (czerwiec 2018): 321–26. http://dx.doi.org/10.17958/ksmt.20.3.201806.321.
Pełny tekst źródłaDing, Lei, Li Xu, Ling Ling Liu, Jin Li Qiao i Yu Yu Liu. "Effect of Heat-Treatment on the Activity of Nickel Phthalocyanine Catalysts for Oxygen Reduction Reaction in Acid and Alkaline Electrolytes". Advanced Materials Research 535-537 (czerwiec 2012): 2104–7. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.2104.
Pełny tekst źródłaTSUTSUI, Takayuki, Tamotsu IGARASHI i Hajime NAKAMURA. "Drag Reduction and Heat Transfer Enhancement of a Square Prism". JSME International Journal Series B 44, nr 4 (2001): 575–83. http://dx.doi.org/10.1299/jsmeb.44.575.
Pełny tekst źródłaWang, Yi, Bo Yu, Jacques L. Zakin i Haifeng Shi. "Review on Drag Reduction and Its Heat Transfer by Additives". Advances in Mechanical Engineering 3 (styczeń 2011): 478749. http://dx.doi.org/10.1155/2011/478749.
Pełny tekst źródłaSaeki, Takashi, Keiji Tokuhara i Toshio Matsumura. "0513 Drag reduction and heat transfer of cationic surfactant solutions". Proceedings of the Fluids engineering conference 2009 (2009): 235–36. http://dx.doi.org/10.1299/jsmefed.2009.235.
Pełny tekst źródłaBashtovoi, V. G., M. S. Krakov i E. M. Taits. "HEAT TRANSFER ENHANCEMENT AND DRAG REDUCTION IN MAGNETOFLUID-COATED CHANNELS". Numerical Heat Transfer, Part A: Applications 20, nr 4 (grudzień 1991): 395–408. http://dx.doi.org/10.1080/10407789108944829.
Pełny tekst źródłaPinnau, René, i Alexander Schulze. "Model reduction techniques for frequency averaging in radiative heat transfer". Journal of Computational Physics 226, nr 1 (wrzesień 2007): 712–31. http://dx.doi.org/10.1016/j.jcp.2007.04.024.
Pełny tekst źródłaYu, Jiu Yang, Li Jun Liu, Wei Lin, Qian Liu, Wen Hao Yang, Si Hao Nie i Yi Wen Chen. "Numerical Simulation and Field Synergy Analysis of Flow and Heat Transfer in a Vibratory Tube". Advanced Materials Research 516-517 (maj 2012): 949–53. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.949.
Pełny tekst źródłaSu, Yu. "Finite Element Simulation of Enhanced Cooling Cutting of Stainless Steel". Applied Mechanics and Materials 312 (luty 2013): 445–49. http://dx.doi.org/10.4028/www.scientific.net/amm.312.445.
Pełny tekst źródłaLemanov, V. V., M. A. Pakhomov, V. I. Terekhov i Z. Travnicek. "Non-stationary convective heat transfer in an air synthetic impinging jet. Experiment and numerical simulation". Journal of Physics: Conference Series 2119, nr 1 (1.12.2021): 012024. http://dx.doi.org/10.1088/1742-6596/2119/1/012024.
Pełny tekst źródłaINABA, Hideo, Naoto HARUKI, Akihiko HORIBE, Naoyuki FURUMOTO, Toru NAKATA i Kenji SATO. "306 Heat Transfer Characteristics of Plate Type Heat Exchanger with Water Flow Reduction Surfactant". Proceedings of Conference of Chugoku-Shikoku Branch 2001.39 (2001): 91–92. http://dx.doi.org/10.1299/jsmecs.2001.39.91.
Pełny tekst źródłaJiang and, Y., i J. M. Floryan. "Influence of Heat Transfer at the Interface on the Thermocapillary Convection in the Adjacent Phase". Journal of Heat Transfer 125, nr 1 (29.01.2003): 190–94. http://dx.doi.org/10.1115/1.1535448.
Pełny tekst źródłaBezaatpour, Mojtaba, i Mohammad Goharkhah. "A novel heat sink design for simultaneous heat transfer enhancement and pressure drop reduction utilizing porous fins and magnetite ferrofluid". International Journal of Numerical Methods for Heat & Fluid Flow 29, nr 9 (2.09.2019): 3128–47. http://dx.doi.org/10.1108/hff-12-2018-0810.
Pełny tekst źródłaChen, A.-Li, Zheng-Yang Li, Tian-Xue Ma, Xiao-Shuang Li i Yue-Sheng Wang. "Heat reduction by thermal wave crystals". International Journal of Heat and Mass Transfer 121 (czerwiec 2018): 215–22. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.12.136.
Pełny tekst źródłaTamayo, Enrique Torres, José W. Morales, Mauro D. Albarracín, Héctor L. Laurencio, Israel P. Pachacama, Brayan I. Guacapiña i Wilson M. Román. "Cooling Temperature and Heat Transfer Coefficients in Cylindrical Heat Exchangers". International Journal of Mechanics 15 (28.12.2021): 254–59. http://dx.doi.org/10.46300/9104.2021.15.29.
Pełny tekst źródłaGuo, Lei, Shusheng Zhang i Jing Hu. "Flow boiling heat transfer characteristics of two-phase flow in microchannels". AIP Advances 12, nr 5 (1.05.2022): 055219. http://dx.doi.org/10.1063/5.0095786.
Pełny tekst źródłaKarayiannis, T. G., i J. D. Tarasuk. "Natural Convection in an Inclined Rectangular Cavity With Different Thermal Boundary Conditions at the Top Plate". Journal of Heat Transfer 110, nr 2 (1.05.1988): 350–57. http://dx.doi.org/10.1115/1.3250491.
Pełny tekst źródłaRazak, N. F. D., M. S. M. Sani i W. H. Azmi. "Heat Transfer Augmentation in Heat Exchanger by using Nanofluids and Vibration Excitation - A Review". International Journal of Automotive and Mechanical Engineering 17, nr 1 (30.03.2020): 7719–33. http://dx.doi.org/10.15282/ijame.17.1.2020.19.0574.
Pełny tekst źródłaChicherin, Stanislav. "Analysis of procedures for heating, ventilation and air conditioning for transfer to low-temperature heat supply". Stroitel stvo nauka i obrazovanie [Construction Science and Education], nr 3 (30.09.2019): 8. http://dx.doi.org/10.22227/2305-5502.2019.3.8.
Pełny tekst źródłaQu, Qifeng, Hongwei Zhu, Huan Sun i Haorong Xu. "Simulation Study on the Effect of Different Fin Spacing on Heat Transfer in Microcolumn Radiator". Journal of Physics: Conference Series 2503, nr 1 (1.05.2023): 012057. http://dx.doi.org/10.1088/1742-6596/2503/1/012057.
Pełny tekst źródłaŁęcki, Marcin, Dariusz Andrzejewski, Artur N. Gutkowski i Grzegorz Górecki. "Study of the Influence of the Lack of Contact in Plate and Fin and Tube Heat Exchanger on Heat Transfer Efficiency under Periodic Flow Conditions". Energies 14, nr 13 (23.06.2021): 3779. http://dx.doi.org/10.3390/en14133779.
Pełny tekst źródła