Gotowa bibliografia na temat „Heat resistant material”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Heat resistant material”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Heat resistant material"
Tukhareli, V. D., E. E. Gnedash i A. V. Tukhareli. "Heat-Resistant Composite Materials Based on Secondary Material Resources". Solid State Phenomena 299 (styczeń 2020): 287–92. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.287.
Pełny tekst źródłaWu, Guang Feng, Xiao Bin Zhang i Wei Wu. "Microstructure and Corrosion Resistant Property Research of Super 304H and TP347H Heat-Resistant Steel Welding Joint". Advanced Materials Research 295-297 (lipiec 2011): 1402–7. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1402.
Pełny tekst źródłaKhLYSTOV, A. I., M. V. KONNOV, A. V. VLASOV i E. A. ChERNOVA. "INORQANIC HIAT RESISTANT INDUSTRIALWORSES AS RAW WABERTAL BASE FOR MANUFACTUREOF FARE RESISTANT KILN MATERIALS". Urban construction and architecture 1, nr 4 (15.12.2011): 87–92. http://dx.doi.org/10.17673/vestnik.2011.04.17.
Pełny tekst źródłaHusarova, I. O., O. M. Potapov, B. M. Gorelov, T. A. Manko i G. O. Frolov. "Model composition heat-resistant materials for multifunctioal coating". Kosmìčna nauka ì tehnologìâ 28, nr 1 (28.02.2022): 43–50. http://dx.doi.org/10.15407/knit2022.01.043.
Pełny tekst źródłaYan, Jun, Hong Lu Bai, Jiao Liu i Da Jun Song. "Analyzing on the Reasonable Composition of High-Chromium Alloy Cast Iron to Make the Mud Pump Shell of Dredger". Advanced Materials Research 734-737 (sierpień 2013): 2465–69. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2465.
Pełny tekst źródłaБессмертный, Василий, Vasiliy Bessmertnyy, Оксана Соколова, Oksana Sokolova, Надежда Бондаренко, Nadezhda Bondarenko, Диана Бондаренко i in. "PLASMACHEMICAL MODIFICATION OF THERMAL INSULATED BLOCKS WITH DECORATIVE COATING". Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, nr 3 (10.04.2019): 85–92. http://dx.doi.org/10.34031/article_5ca1f6331ec888.51255959.
Pełny tekst źródłaTukhareli, V. D., O. Y. Pushkarskaya i A. V. Tukhareli. "Methodological Approaches in Assessing the Possibility of Using Waste Electrocorundum Materials in Concrete Compositions". Solid State Phenomena 284 (październik 2018): 1030–35. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.1030.
Pełny tekst źródłaZhang, Lin Chun. "Assessment of Heat Resistant Concrete of Magnesia-Phosphate". Advanced Materials Research 800 (wrzesień 2013): 341–44. http://dx.doi.org/10.4028/www.scientific.net/amr.800.341.
Pełny tekst źródłaBaranova, T. F., i S. A. Valiakhmetov. "Ceramic Material for Making Heat-Resistant Products". Refractories and Industrial Ceramics 57, nr 1 (maj 2016): 46–49. http://dx.doi.org/10.1007/s11148-016-9925-6.
Pełny tekst źródłaChukhlanov, V. Yu, O. G. Selivanov i M. E. Ilina. "Development of Heat-Resistant Composite Foam Material". Materials Science Forum 1082 (31.03.2023): 141–45. http://dx.doi.org/10.4028/p-026s0w.
Pełny tekst źródłaRozprawy doktorskie na temat "Heat resistant material"
Lundberg, Daniel, Filip Wilson, Hjalmar Gunnarsson, Leo Sjörén, Robin Xu i Erik Djurberg. "Long term aging and creep exposure for advanced heat resistant alloys : A phase analysis". Thesis, Uppsala universitet, Institutionen för materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446407.
Pełny tekst źródłaNilsson, Erik A. A. "Degradation Mechanisms of Heat Resistant Steel at Elevated Temperatures : In an Iron Ore Pelletizing Industry". Doctoral thesis, Luleå tekniska universitet, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62162.
Pełny tekst źródłaMorata, Royes Joan. "Wear resistance of heat-treated Advanced High Strength Steels and casting". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80526.
Pełny tekst źródłaNilsson, Erik. "Oxidation of heat resistant stainless steels in a pelletizing process". Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26622.
Pełny tekst źródłaPathak, Sayali V. "Enhanced Heat Transfer in Composite Materials". Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1368105955.
Pełny tekst źródłaDavis, Robert Bruce. "Design and development of advanced castable refractory materials /". Full text open access at:, 2001. http://content.ohsu.edu/u?/etd,187.
Pełny tekst źródłaNam, Jae-Do. "Polymer matrix degradation : characterization and manufacturing process for high temperature composites /". Thesis, Connect to this title online; UW restricted, 1991. http://hdl.handle.net/1773/9867.
Pełny tekst źródłaPeng, Wu Tseng. "Evaluation of ceramic candle filters degradation and damage location using four-point bending tests". Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1105.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains x, 85 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 81-82).
Chhasatia, Viralsinh. "Characterization of thermal interface materials using flash diffusivity and infrared microscopy methods". Diss., Online access via UMI:, 2009.
Znajdź pełny tekst źródłaIncludes bibliographical references.
Fox, Bronwyn Louise. "The manufacture, characterization and aging of novel high temperature carbon fibre composites". View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20011207.114246/index.html.
Pełny tekst źródłaKsiążki na temat "Heat resistant material"
1935-, Schacht Charles A., red. Refractories handbook. New York: Marcel Dekker, 2004.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Probabilistic material strength degradation model for Iconel 718 components subjected to high temperature, mechanical fatigue, creep and thermal fatigue effects. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaGeorge C. Marshall Space Flight Center., red. A preliminary mechanical property and stress corrosion evaluation of VIM-VAR work strengthened and direct aged inconel 718 bar material. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1987.
Znajdź pełny tekst źródłaWeimar Workshop on High Performance Concrete: Material Properties and Design (4th 1995 Hochschule für Architektur und Bauwesen). High performance concrete: Material properties and design : proceedings of the Fourth Weimar Workshop on High Performance Concrete: Material Properties and Design held at Hochschule für Architektur und Bauwesen (HAB) Weimar, Germany, October 4th and 5th 1995. Redaktorzy Wittmann F. H, Schwesinger Peter i Hochschule für Architektur und Bauwesen Weimar (Germany). Freiburg: Aedificatio, 1995.
Znajdź pełny tekst źródłaErol, Ayşe. Dilute III-V nitride semiconductors and material systems: Physics and technology. Berlin: Springer, 2008.
Znajdź pełny tekst źródłaHigh Heat-resistant Plastics Conference (1985 Stamford, Conn.). Proceedings from 1985 Conference on High Heat-resistant Plastics: "material options and market opportunities in plastics applications requiring elevated temperature resistance" : as presented at 1985 High Heat-resistant Plastics Conference, November 12-13, 1985, Crowne Plaza Hotel, Stamford, Connecticut. Stamford, CT: Business Communications Co., 1985.
Znajdź pełny tekst źródłaKajaste-Rudnitski, Juri. Numerical model of thermoelastic-plastic concrete material. Espoo: Technical Research Centre of Finland, 1993.
Znajdź pełny tekst źródłaHugo, Leon, i Huang Xiao, red. Superalloys: Alloying and performance. Materials Park, Ohio: ASM International, 2010.
Znajdź pełny tekst źródła1939-, Kumashiro Yukinobu, red. Electric refractory materials. New York: Marcel Dekker, 2000.
Znajdź pełny tekst źródłaR, Davis J., i ASM International. Handbook Committee., red. Heat-resistant materials. Materials Park, Ohio: ASM International, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Heat resistant material"
Chukhlanov, Vladimir, Oleg Selivanov, Marina Ilina i Ivan Kurochkin. "Development of Heat-Resistant Composite Foam Material". W Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022), 690–95. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36960-5_78.
Pełny tekst źródłaYang, Huimin. "A Heat Resistant Label Material and Its Application in High Temperature Processing". W Advances in Porcelain Enamel Technology, 77–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470640906.ch14.
Pełny tekst źródłaMishuris, Gennady, Wiktoria Miszuris i Andreas Öchsner. "Evaluation of Transmission Conditions for a Thin Heat-Resistant Inhomogeneous Interphase in Dissimilar Material". W Materials Science Forum, 87–92. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-438-3.87.
Pełny tekst źródłaZhu, Zenghui, i Qingqin Meng. "Analysis on Random Vibration and Impact Response of Vehicle-Borne Electronic Chassis". W Lecture Notes in Mechanical Engineering, 1281–96. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_103.
Pełny tekst źródłaMori, Kenichi, Kazuhiro Takahashi, Hideki Fujii i Hiroaki Otsuka. "Material Properties of Newly Developed Heat Resistant Titanium Alloy “Ti-1Cu-1Sn-0.35Si-0.2Nb” for Automotive Exhaust Applications". W Proceedings of the 13th World Conference on Titanium, 1831–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119296126.ch307.
Pełny tekst źródłaShulpekov, Alexander М., Ramil M. Gabbasov, Vladimir D. Kitler i Olga K. Lepakova. "Synthesis of Composite Material 2(CrxTi1−x)AlC by the SHS Method for Heat-Resistant Products and Coatings". W Springer Proceedings in Physics, 315–21. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1872-6_43.
Pełny tekst źródłaBíró, Tamás, i László Dévényi. "Damage Analysis of Heat Resistant Steels". W Materials Science Forum, 303–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-426-x.303.
Pełny tekst źródłaBerger, C., J. Granacher i Y. Kostenko. "Creep Equations for Heat Resistant Steels". W Steels and Materials for Power Plants, 345–51. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606181.ch60.
Pełny tekst źródłaEisenträger, Johanna, i Holm Altenbach. "Creep in Heat-resistant Steels at Elevated Temperatures". W Advanced Structured Materials, 79–112. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30355-6_4.
Pełny tekst źródłaDonskoi, A. A., M. A. Shashkina i G. E. Zaikov. "Development of fire and heat shield materials". W Fire Resistant and Thermally Stable Materials Derived from Chlorinated Polyethylene, 156–69. London: CRC Press, 2023. http://dx.doi.org/10.1201/9780429070723-9.
Pełny tekst źródłaStreszczenia konferencji na temat "Heat resistant material"
Diaz, Alejandro R., i Andre Benard. "Topology Optimization of Heat-Resistant Structures". W ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/dac-48769.
Pełny tekst źródłaKoňáková, Dana, Eva Vejmelková, Vojtěch Pommer, Václav Kočí i Robert Černý. "Material properties of low-cement heat resistant composites containing ceramic powder". W INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0162266.
Pełny tekst źródłaSanling, Fu, Li Quanan, Jing Xiaotian, Zhang Qing, Chen Zhi i Liu Wenjian. "Review on research and development of heat resistant Magnesium alloy". W 1st International Conference on Mechanical Engineering and Material Science). Paris, France: Atlantis Press, 2012. http://dx.doi.org/10.2991/mems.2012.179.
Pełny tekst źródłaLiu, Juan, Hongyuan Xu, Longhao Qi i He Li. "Study on Erosive Wear and Novel Wear-Resistant Materials for Centrifugal Slurry Pumps". W ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56248.
Pełny tekst źródłaFan, Zhichao, Shulin Xiang i Tao Chen. "Design of Centrifugally Cast Fe-Cr-Ni Heat-Resistant Alloys Driven by Material Genome Technology". W ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-106244.
Pełny tekst źródłaHamaguchi, Tomoaki, Shinnosuke Kurihara, Hiroyuki Hirata i Hirokazu Okada. "Microstructural Evaluation in Heat-Affected Zone of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel". W AM-EPRI 2019, redaktorzy J. Shingledecker i M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0071.
Pełny tekst źródłaIkeda, Hiroaki, i Shigenobu Sekine. "The Plating Technology for Press-Fit Pins using Heat-Resistant IMC Joint Material". W 2024 International Conference on Electronics Packaging (ICEP). IEEE, 2024. http://dx.doi.org/10.23919/icep61562.2024.10535538.
Pełny tekst źródłaGlasser, Marc. "Choosing the Proper Heat Resistant Alloy Based on Application Criteria". W HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0186.
Pełny tekst źródłaNarita, Toshio, L. T. Handoko i Masbah R. T. Siregar. "A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures". W INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY. AIP, 2009. http://dx.doi.org/10.1063/1.3243272.
Pełny tekst źródłaBelov, A. N., Yu A. Chaplygin, A. A. Golishnikov, D. A. Kostyukov, M. G. Putrya, S. O. Safonov i V. I. Shevyakov. "Tungsten alloyed with rhenium as an advanced material for heat-resistant silicon ICs interconnects". W The International Conference on Micro- and Nano-Electronics 2016, redaktorzy Vladimir F. Lukichev i Konstantin V. Rudenko. SPIE, 2016. http://dx.doi.org/10.1117/12.2264789.
Pełny tekst źródłaRaporty organizacyjne na temat "Heat resistant material"
Porter, W. D. Thermophysical Properties of Heat Resistant Shielding Material. Office of Scientific and Technical Information (OSTI), grudzień 2004. http://dx.doi.org/10.2172/885686.
Pełny tekst źródłaDeevi, S. C., i V. K. Sikka. Reaction synthesis of heat-resistant materials. Office of Scientific and Technical Information (OSTI), grudzień 1995. http://dx.doi.org/10.2172/273757.
Pełny tekst źródłaCrisosto, Carlos, Susan Lurie, Haya Friedman, Ebenezer Ogundiwin, Cameron Peace i George Manganaris. Biological Systems Approach to Developing Mealiness-free Peach and Nectarine Fruit. United States Department of Agriculture, 2007. http://dx.doi.org/10.32747/2007.7592650.bard.
Pełny tekst źródłaHershcovitch, Ady, i Michael Furey. Fire Retardant/Heat Resistant Paint, Primer, Insulation and Other Construction Materials. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1080286.
Pełny tekst źródłaKelly, J., J. Haslam, L. Finkenauer, P. Roy, J. Stolaroff, D. Nguyen, M. Ross i in. Additive Manufacturing of Corrosion Resistant UHTC Materials for Chloride Salt-to-sCO2 Brayton Cycle Heat Exchangers. Office of Scientific and Technical Information (OSTI), maj 2021. http://dx.doi.org/10.2172/1787194.
Pełny tekst źródłaFuchs, Marcel, Jerry Hatfield, Amos Hadas i Rami Keren. Reducing Evaporation from Cultivated Soils by Mulching with Crop Residues and Stabilized Soil Aggregates. United States Department of Agriculture, 1993. http://dx.doi.org/10.32747/1993.7568086.bard.
Pełny tekst źródłaSabau, Adrian. Review of Thermal Contact Resistance of Flexible Graphite Materials for Thermal Interfaces in High Heat Flux Applications. Office of Scientific and Technical Information (OSTI), październik 2022. http://dx.doi.org/10.2172/1896991.
Pełny tekst źródłaWang, Yong-Yi, Zhili Feng, Wentao Cheng i Sudarsanam Suresh Babu. L51939 Weldability of High-Strength Enhanced Hardenability Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2003. http://dx.doi.org/10.55274/r0010384.
Pełny tekst źródłaGill. L51675 Effects of Weldment Property Variations on the Behavior of Line Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 1993. http://dx.doi.org/10.55274/r0010133.
Pełny tekst źródłaMadrzykowski, aniel, Craig Weinschenk i Joseph Willi. Exposing Fire Service Hose in a Flashover Chamber. UL's Fire Safety Research Institute, kwiecień 2018. http://dx.doi.org/10.54206/102376/tkog7594.
Pełny tekst źródła