Artykuły w czasopismach na temat „Heat-engines”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Heat-engines.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Heat-engines”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Johnson, Clifford V. "Holographic heat engines as quantum heat engines". Classical and Quantum Gravity 37, nr 3 (13.01.2020): 034001. http://dx.doi.org/10.1088/1361-6382/ab5ba9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kuboyama, Tatsuya, Hidenori Kosaka, Tetsuya Aizawa i Yukio Matsui. "A Study on Heat Loss in DI Diesel Engines(Diesel Engines, Performance and Emissions, Heat Recovery)". Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 111–18. http://dx.doi.org/10.1299/jmsesdm.2004.6.111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gemmen, R., M. C. Williams i G. Richards. "Electrochemical Heat Engines". ECS Transactions 65, nr 1 (2.02.2015): 243–52. http://dx.doi.org/10.1149/06501.0243ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Willoughby, H. E. "Hurricane heat engines". Nature 401, nr 6754 (październik 1999): 649–50. http://dx.doi.org/10.1038/44287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Johnson, Clifford V. "Holographic heat engines". Classical and Quantum Gravity 31, nr 20 (1.10.2014): 205002. http://dx.doi.org/10.1088/0264-9381/31/20/205002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

KRIBUS, ABRAHAM. "Heat Transfer in Miniature Heat Engines". Heat Transfer Engineering 25, nr 4 (czerwiec 2004): 1–3. http://dx.doi.org/10.1080/01457630490443505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Courtney, W. "Cool running heat engines". Journal of Biological Physics and Chemistry 21, nr 3 (30.09.2021): 79–87. http://dx.doi.org/10.4024/12co20a.jbpc.21.03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Holubec, Viktor, i Artem Ryabov. "Fluctuations in heat engines". Journal of Physics A: Mathematical and Theoretical 55, nr 1 (15.12.2021): 013001. http://dx.doi.org/10.1088/1751-8121/ac3aac.

Pełny tekst źródła
Streszczenie:
Abstract At the dawn of thermodynamics, Carnot’s constraint on efficiency of heat engines stimulated the formulation of one of the most universal physical principles, the second law of thermodynamics. In recent years, the field of heat engines acquired a new twist due to enormous efforts to develop and describe microscopic machines based on systems as small as single atoms. At microscales, fluctuations are an inherent part of dynamics and thermodynamic variables such as work and heat fluctuate. Novel probabilistic formulations of the second law imply general symmetries and limitations for the fluctuating output power and efficiency of the small heat engines. Will their complete understanding ignite a similar revolution as the discovery of the second law? Here, we review the known general results concerning fluctuations in the performance of small heat engines. To make the discussion more transparent, we illustrate the main abstract findings on exactly solvable models and provide a thorough theoretical introduction for newcomers to the field.
Style APA, Harvard, Vancouver, ISO itp.
9

Johnson, Clifford V. "Taub–Bolt heat engines". Classical and Quantum Gravity 35, nr 4 (12.01.2018): 045001. http://dx.doi.org/10.1088/1361-6382/aaa010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ahmed, Wasif, Hong Zhe Chen, Elliott Gesteau, Ruth Gregory i Andrew Scoins. "Conical holographic heat engines". Classical and Quantum Gravity 36, nr 21 (14.10.2019): 214001. http://dx.doi.org/10.1088/1361-6382/ab470b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Poletayev, Andrey D., Ian S. McKay, William C. Chueh i Arun Majumdar. "Continuous electrochemical heat engines". Energy & Environmental Science 11, nr 10 (2018): 2964–71. http://dx.doi.org/10.1039/c8ee01137k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Solomon, Dan. "Thermomagnetic mechanical heat engines". Journal of Applied Physics 65, nr 9 (maj 1989): 3687–93. http://dx.doi.org/10.1063/1.342595.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Valdès, L. C. "Competitive solar heat engines". Renewable Energy 29, nr 11 (wrzesień 2004): 1825–42. http://dx.doi.org/10.1016/j.renene.2004.02.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Hilt, Matthew G., K. A. Pestka, G. D. Mahan, J. D. Maynard, D. Pickrell, B. Na i J. Tamburini. "Unconventional thermoacoustic heat engines". Journal of the Acoustical Society of America 119, nr 5 (maj 2006): 3414. http://dx.doi.org/10.1121/1.4786811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Aneja, Preety. "Optimization and Efficiency Studies of Heat Engines: A Review". Journal of Advanced Research in Mechanical Engineering and Technology 07, nr 03 (7.10.2020): 37–58. http://dx.doi.org/10.24321/2454.8650.202006.

Pełny tekst źródła
Streszczenie:
This review aims to study the various theoretical and numerical investigations in the optimization of heat engines. The main focus is to discuss the procedures to derive the efficiency of heat engines under different operating regimes (or optimization criteria) for different models of heat engines such as endreversible models, stochastic models, low-dissipation models, quantum models etc. Both maximum power and maximum efficiency operational regimes are desirable but not economical, so to meet the thermo-ecological considerations, some other compromise-based criteria have been proposed such as Ω criterion (ecological criterion) and efficient power criterion. Thus, heat engines can be optimized to work at an efficiency which may not be the maximum (Carnot) efficiency. The optimization efficiency obtained under each criterion shows a striking universal behaviour in the near-equilibrium regime. We also discussed a multi-parameter combined objective function of heat engines. The optimization efficiency derived from the multi-parameter combined objective function includes a variety of optimization efficiencies, such as the efficiency at the maximum power, efficiency at the maximum efficiency-power state, efficiency at the maximum criterion, and Carnot efficiency. Thus, a comparison of optimization of heat engines under different criteria enables to choose the suitable one for the best performance of heat engine under different conditions.
Style APA, Harvard, Vancouver, ISO itp.
16

Huleihil, Mahmoud, i Gedalya Mazor. "Golden Section Heat Engines and Heat Pumps". International Journal of Arts 2, nr 2 (31.08.2012): 1–7. http://dx.doi.org/10.5923/j.arts.20120202.01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ke, Zhenying, Yang Xu i Zihao Guo. "Analysis of the social impact of heat engine and its future application". IOP Conference Series: Earth and Environmental Science 1011, nr 1 (1.04.2022): 012007. http://dx.doi.org/10.1088/1755-1315/1011/1/012007.

Pełny tekst źródła
Streszczenie:
Abstract This paper aims to evaluate the social impact of the heat engine and analyze the application of heat engines in the future. This paper starts with some background information on heat engines and the challenges of gas pollution and gas shortage. The concepts of efficiency and environmental friendliness of the heat engine are widely discussed, which speeds up the development of several kinds of heat engines. We discuss the application of heat engines in different industries from three main aspects: agriculture, marine engine, and aviation. They improve our daily life and provide the required energy to the community. Thermoacoustic Heat Engine (TAHE), Liquid Air Cycle Engines (LACE), and a new class of Heat engine without the expulsion of reaction mass are introduced in this paper. Furthermore, the article will cover some futures. One is artificial intelligence, and another one is about biofuel, which helps heat engines to have higher efficiency and less pollution, and also how heat engines are involved in the next decade.
Style APA, Harvard, Vancouver, ISO itp.
18

Derényi, Imre, i R. Astumian. "Efficiency of Brownian heat engines". Physical Review E 59, nr 6 (czerwiec 1999): R6219—R6222. http://dx.doi.org/10.1103/physreve.59.r6219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Sinitsyn, N. A. "Fluctuation relation for heat engines". Journal of Physics A: Mathematical and Theoretical 44, nr 40 (14.09.2011): 405001. http://dx.doi.org/10.1088/1751-8113/44/40/405001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Anderson, Warren G. "Relativistic heat engines and efficiency". Physics Letters A 223, nr 1-2 (listopad 1996): 23–27. http://dx.doi.org/10.1016/s0375-9601(96)00715-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Grazzini, Giuseppe. "Work from irreversible heat engines". Energy 16, nr 4 (kwiecień 1991): 747–55. http://dx.doi.org/10.1016/0360-5442(91)90024-g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Richards, George, Randall S. Gemmen i Mark C. Williams. "Solid – state electrochemical heat engines". International Journal of Hydrogen Energy 40, nr 9 (marzec 2015): 3719–25. http://dx.doi.org/10.1016/j.ijhydene.2015.01.043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Löffler, Michael. "Batch Processes in Heat Engines". Energy 125 (kwiecień 2017): 788–94. http://dx.doi.org/10.1016/j.energy.2017.02.105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Martínez, Ignacio A., Édgar Roldán, Luis Dinis i Raúl A. Rica. "Colloidal heat engines: a review". Soft Matter 13, nr 1 (2017): 22–36. http://dx.doi.org/10.1039/c6sm00923a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Hsu, S. M., J. M. Perez i C. S. Ku. "Advanced lubricants for heat engines". Journal of Synthetic Lubrication 14, nr 2 (lipiec 1997): 143–56. http://dx.doi.org/10.1002/jsl.3000140204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Nuwayhid, R. Y., i F. Moukalled. "Effect of heat leak on cascaded heat engines". Energy Conversion and Management 43, nr 15 (październik 2002): 2067–83. http://dx.doi.org/10.1016/s0196-8904(01)00146-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lampinen, Markku J., i Jari Vuorisalo. "Heat accumulation function and optimization of heat engines". Journal of Applied Physics 69, nr 2 (15.01.1991): 597–605. http://dx.doi.org/10.1063/1.347392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Vetchanin, Evgeniy, i Valentin Tenenev. "Simulation of gas dynamics in heat engines of complex shapes". Modern science: researches, ideas, results, technologies 8, nr 2 (15.06.2017): 29–34. http://dx.doi.org/10.23877/ms.ts.39.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Velidi, Gurunadh, i Chun Sang Yoo. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges". Energies 16, nr 9 (8.05.2023): 3968. http://dx.doi.org/10.3390/en16093968.

Pełny tekst źródła
Streszczenie:
Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these requirements. There are several types of combustion engines used in UAVs, including reciprocating engines, turbine engines, and Wankel engines. Recent advancements in engine design, such as the use of ceramic materials and microscale combustion, have the potential to enhance engine performance and durability. This article explores the potential use of combustion-based engines, particularly microjet engines, as an alternative to electrically powered unmanned aerial vehicle (UAV) systems. It provides a review of recent developments in UAV engines and micro combustors, as well as studies on flame stabilization techniques aimed at enhancing engine performance. Heat recirculation methods have been proposed to minimize heat loss to the combustor walls. It has been demonstrated that employing both bluff-body stabilization and heat recirculation methods in narrow channels can significantly improve combustion efficiency. The combination of flame stabilization and heat recirculation methods has been observed to significantly improve the performance of micro and mesoscale combustors. As a result, these technologies hold great promise for enhancing the performance of UAV engines.
Style APA, Harvard, Vancouver, ISO itp.
30

JONES, JOHN DEWEY. "Heat Transfer Processes in Low-Heat-Rejection Diesel Engines". Heat Transfer Engineering 8, nr 3 (styczeń 1987): 90–99. http://dx.doi.org/10.1080/01457638708962807.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Odes, Ron, i Abraham Kribus. "Performance of heat engines with non-zero heat capacity". Energy Conversion and Management 65 (styczeń 2013): 108–19. http://dx.doi.org/10.1016/j.enconman.2012.08.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Moukalled, F., R. Y. Nuwayhid i N. Noueihed. "The efficiency of endoreversible heat engines with heat leak". International Journal of Energy Research 19, nr 5 (lipiec 1995): 377–89. http://dx.doi.org/10.1002/er.4440190503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Matos, Wagner Santos, Juliano de Assis Pereira, Josef Klammer, José Antonio Perrella Balestieri, Alex Mendonça Bimbato i Marcelino Pereira do Nascimento. "HEAT REJECTION AVOIDANCE IN COMBUSTION ENGINES". Brazilian Journal of Development 6, nr 7 (2020): 53369–92. http://dx.doi.org/10.34117/bjdv6n7-835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Myers, Nathan M., Jacob McCready i Sebastian Deffner. "Quantum Heat Engines with Singular Interactions". Symmetry 13, nr 6 (31.05.2021): 978. http://dx.doi.org/10.3390/sym13060978.

Pełny tekst źródła
Streszczenie:
By harnessing quantum phenomena, quantum devices have the potential to outperform their classical counterparts. Here, we examine using wave function symmetry as a resource to enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic working medium can yield better performance than a fermionic medium. We expand upon this work by incorporating a singular interaction that allows the effective symmetry to be tuned between the bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of “statistical anyons”, we explore the interplay between interparticle interactions and wave function symmetry on engine performance.
Style APA, Harvard, Vancouver, ISO itp.
35

Yerra, Pavan Kumar, i Chandrasekhar Bhamidipati. "Critical heat engines in massive gravity". Classical and Quantum Gravity 37, nr 20 (26.09.2020): 205020. http://dx.doi.org/10.1088/1361-6382/abb2d1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Atchley, Anthony. "Sound waves rev up heat engines". Physics World 12, nr 8 (sierpień 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/8/27.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Larsen, D. C., J. W. Adams, L. R. Johnson, A. P. S. Teotia, L. G. Hill i T. Z. Kattamis. "Ceramic Materials for Advanced Heat Engines". Journal of Engineering Materials and Technology 109, nr 1 (1.01.1987): 99. http://dx.doi.org/10.1115/1.3225945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Páv, Karel, Václav Rychtář i Václav Vorel. "Heat balance in modern automotive engines". Journal of Middle European Construction and Design of Cars 10, nr 2 (1.11.2012): 6–13. http://dx.doi.org/10.2478/v10138-012-0007-7.

Pełny tekst źródła
Streszczenie:
Shrnutí Tento příspěvek obsahuje informace o přerozdělení tepla v současných vozidlových spalovacích motorech. Vycházelo se z různých konstrukcí především zážehových motorů s rozdílnými zdvihovými objemy, vznětové motory jsou však také zmíněny. Je zde uveden postup výpočtu tepelné bilance motoru, stejně tak, jako obtíže spojené se získáním vstupních dat měřením. Byl navržen a ověřen empirický vztah pro výpočet tepelného toku do chladící kapaliny, který umožňuje snadné nalezení nekorektně změřených pracovních bodů motoru už v počáteční fázi automatického měřícího cyklu. Naměřené hodnoty byly srovnány s výpočtem pomocí programu GT-Power. Na závěr je uvedeno srovnání různých typů motorů s ohledem na velikost tepelného toku do chladící kapaliny
Style APA, Harvard, Vancouver, ISO itp.
39

Pilgram, Sebastian, David Sánchez i Rosa López. "Quantum point contacts as heat engines". Physica E: Low-dimensional Systems and Nanostructures 74 (listopad 2015): 447–50. http://dx.doi.org/10.1016/j.physe.2015.08.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Chakraborty, Avik, i Clifford V. Johnson. "Benchmarking black hole heat engines, II". International Journal of Modern Physics D 27, nr 16 (grudzień 2018): 1950006. http://dx.doi.org/10.1142/s0218271819500068.

Pełny tekst źródła
Streszczenie:
We extend to nonstatic black holes our benchmarking scheme that allows for cross–comparison of the efficiencies of asymptotically AdS black holes used as working substances in heat engines. We use a circular cycle in the [Formula: see text] plane as the benchmark cycle. We study Kerr black holes in four spacetime dimensions as an example. As in the static case, we find an exact formula for the benchmark efficiency in an ideal gas-like limit, which may serve as an upper bound for rotating black hole heat engines in a thermodynamic ensemble with fixed angular velocity. We use the benchmarking scheme to compare Kerr to static black holes charged under Maxwell and Born–Infeld sectors.
Style APA, Harvard, Vancouver, ISO itp.
41

Chakraborty, Avik, i Clifford V. Johnson. "Benchmarking black hole heat engines, I". International Journal of Modern Physics D 27, nr 16 (grudzień 2018): 1950012. http://dx.doi.org/10.1142/s0218271819500123.

Pełny tekst źródła
Streszczenie:
We present the results of initiating a benchmarking scheme that allows for cross-comparison of the efficiencies of black holes used as working substances in heat engines. We use a circular cycle in the [Formula: see text] plane as the benchmark engine. We test it on Einstein–Maxwell, Gauss–Bonnet and Born–Infeld black holes. Also, we derive a new and surprising exact result for the efficiency of a special “ideal gas” system to which all the black holes asymptote.
Style APA, Harvard, Vancouver, ISO itp.
42

Arcoumanis, C., P. Cutter i D. S. Whitelaw. "Heat Transfer Processes in Diesel Engines". Chemical Engineering Research and Design 76, nr 2 (luty 1998): 124–32. http://dx.doi.org/10.1205/026387698524695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wei, Shao-Wen, i Yu-Xiao Liu. "Charged AdS black hole heat engines". Nuclear Physics B 946 (wrzesień 2019): 114700. http://dx.doi.org/10.1016/j.nuclphysb.2019.114700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Long, Rui, i Wei Liu. "Ecological optimization for general heat engines". Physica A: Statistical Mechanics and its Applications 434 (wrzesień 2015): 232–39. http://dx.doi.org/10.1016/j.physa.2015.04.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Senft, J. R. "Mechanical efficiency of kinematic heat engines". Journal of the Franklin Institute 324, nr 2 (styczeń 1987): 273–90. http://dx.doi.org/10.1016/0016-0032(87)90066-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Senft, J. R. "Pressurization effects in kinematic heat engines". Journal of the Franklin Institute 328, nr 2-3 (styczeń 1991): 255–79. http://dx.doi.org/10.1016/0016-0032(91)90034-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Chen, Lingen, Fengrui Sun i Chih Wu. "Thermo-economics for endoreversible heat-engines". Applied Energy 81, nr 4 (sierpień 2005): 388–96. http://dx.doi.org/10.1016/j.apenergy.2004.09.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Gordon, J. M. "On optimized solar-driven heat engines". Solar Energy 40, nr 5 (1988): 457–61. http://dx.doi.org/10.1016/0038-092x(88)90100-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Boehm, R. F. "Maximum performance of solar heat engines". Applied Energy 23, nr 4 (styczeń 1986): 281–96. http://dx.doi.org/10.1016/0306-2619(86)90012-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Flint, R. F. "Ceramic materials for advanced heat engines". Materials & Design 7, nr 4 (lipiec 1986): 215. http://dx.doi.org/10.1016/0261-3069(86)90139-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii