Artykuły w czasopismach na temat „Heat engineering”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Heat engineering.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Heat engineering”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kolomeitsev, V. V., i E. F. Kolomeitseva. "Heat Engineering". Refractories and Industrial Ceramics 40, nr 1-2 (styczeń 1999): 64–69. http://dx.doi.org/10.1007/bf02762450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Dobáková, Romana, Natália Jasminská, Tomáš Brestovič, Mária Čarnogurská i Marián Lázár. "Dimensional analysis application when calculating heat losses". International Journal of Engineering Research and Science 3, nr 9 (30.09.2017): 29–34. http://dx.doi.org/10.25125/engineering-journal-ijoer-sep-2017-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Akhmetov, Dr Sairanbek, i Dr Anarbay Kudaykulov. "On the Method of Construction of the Dependence of the Heat Extension Coefficient on Temperature in Heat-resistant Alloys". International Journal of Engineering Research and Science 3, nr 8 (31.08.2017): 20–29. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Garimella, Srinivas, i Matthew Hughes. "Engineering for Heat Waves". American Scientist 111, nr 6 (2023): 328. http://dx.doi.org/10.1511/2023.111.6.328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Vereshchagina, T., N. Loginov i A. Sorokin. "HEAT PIPES IN NUCLEAR ENGINEERING". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, nr 4 (26.12.2021): 213–33. http://dx.doi.org/10.55176/2414-1038-2021-4-213-233.

Pełny tekst źródła
Streszczenie:
The paper provides an overview of technical solutions for using of heat pipes in nuclear power plants both developed and operating. The review based on the scientific, technical and patent literature shows wide application heat pipes as heat transfer devices. Using of them for small and super-small power plants seems to be especially effective, because of high specific cost of plants with circulating coolants. A heat pipe is a device transferrind the heat by means of evaporation and condensation of a coolant circulating automatically under the action of capillar or gravitation forces. Heat pipes are used rather widely, both abroad and in Russia. The first application of a heat pipe principle in nuclear power plants was published in 1957, even before the emergence of the term "heat pipe". Now, there are about 300 patents in the world related to heat pipes application in nuclear power plants. Theare are seweral thouthands articles on the development of nuclear reactors with heat pipes have been published in the scientific and technical literature. One should expect that fifth-generation nuclear reactors cooled by heat pipes without any mechanisms and machines for the circulation of the coolant, as well as without the consumption of mechanical and electrical energy, will be appeared in this decade.
Style APA, Harvard, Vancouver, ISO itp.
6

Kotake, Susumu. "Molecular Engineering in Heat Transfer". International Journal of Fluid Mechanics Research 25, nr 4-6 (1998): 468–81. http://dx.doi.org/10.1615/interjfluidmechres.v25.i4-6.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ball, Philip. "Computer engineering: Feeling the heat". Nature 492, nr 7428 (grudzień 2012): 174–76. http://dx.doi.org/10.1038/492174a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bansal, Pradeep. "Advances in Heat Transfer Engineering". Heat Transfer Engineering 31, nr 12 (październik 2010): 963–64. http://dx.doi.org/10.1080/01457631003638903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Glaeser, W. A. "Surface engineering and heat treatment". Tribology International 30, nr 3 (marzec 1997): 245–46. http://dx.doi.org/10.1016/s0301-679x(96)00035-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Proskuryakov, A. G., E. N. Videneev, V. N. Proselkov, V. P. Spasskov i K. V. Simonov. "Estimating VVÉR heat engineering reliability". Soviet Atomic Energy 68, nr 3 (marzec 1990): 187–91. http://dx.doi.org/10.1007/bf02074083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Cremers, C. J. "Engineering flow and heat exchange". International Journal of Heat and Fluid Flow 6, nr 3 (wrzesień 1985): 159. http://dx.doi.org/10.1016/0142-727x(85)90003-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Oellrich, L. R. "Heat transfer in LNG Engineering". Chemical Engineering and Processing: Process Intensification 31, nr 3 (lipiec 1992): 205. http://dx.doi.org/10.1016/0255-2701(92)80017-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gortyshov, Yu F., i P. G. Danilaev. "Inverse Problems of Heat Engineering". Russian Aeronautics 66, S1 (grudzień 2023): S57—S100. http://dx.doi.org/10.3103/s1068799823050021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

E.V., Shipacheva, Pirmatov R. Kh. i Turdalieva M.K. "Heat Engineering Heterogeneity Of The Outer Walls Of Earthquake-Resistant Buildings". American Journal of Interdisciplinary Innovations and Research 02, nr 12 (7.12.2020): 1–8. http://dx.doi.org/10.37547/tajiir/volume02issue12-01.

Pełny tekst źródła
Streszczenie:
When assessing the level of energy efficiency of civilian buildings, a special place is given to establishing the level of thermal protection of their external enclosing structures. Significant discrepancies in the results of theoretical and experimental studies of heat fluxes through the outer walls of buildings erected in seismic areas are associated with the design features of fences - the presence of reinforced concrete elements in them: anti-seismic belts at the level of floors, cores at intersections of walls and along the edges of large window openings ... In addition, in recent years, external walls have become widespread, which are filling of bricks or aerated concrete blocks between the main structural elements of the frame - monolithic reinforced concrete columns and crossbars. The introduction of reinforced concrete elements into the structure of the external wall fencing provides strength, rigidity and stability of buildings, guarantees its seismic resistance. At the same time, reinforced concrete inclusions are significant “cold bridges” in warmer brick or aerated concrete masonry. Such heat engineering heterogeneity of earthquake-resistant outer walls significantly complicates the process of determining their heat-shielding properties. This, in turn, leads to errors in the design of heating systems, which inevitably affects the thermal comfort of the premises, the formation of condensation and mold zones in the cold zones of the inner surface of the fences. The article presents the results of theoretical and experimental studies to determine the heat-shielding properties of external heat-engineering heterogeneous walls of earthquake-resistant buildings. The most reliable method for calculating the reduced resistance to heat transfer of an inhomogeneous external structure and the coefficient of its thermal inhomogeneity have been established.
Style APA, Harvard, Vancouver, ISO itp.
15

Rajski, Krzysztof, i Jan Danielewicz. "Heat Transfer and Heat Recovery Systems". Energies 16, nr 7 (5.04.2023): 3258. http://dx.doi.org/10.3390/en16073258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Yu, Kitae, Junhyo Kim, Jungpil Noh, Sunchul Huh, Byeongkeun Choi, Hanshik Chung i Hyomin Jeong. "Analysis of laminar nanofluid forced convection heat transport through the CFD". International Journal of Engineering Research and Science 3, nr 8 (31.08.2017): 69–75. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wenqiang, Cui. "Up-Tube Heat Exchanger Engineering Design and Heat Transfer Analysis". Journal of Industry and Engineering Management 1, nr 1 (marzec 2023): 88–91. http://dx.doi.org/10.62517/jiem.202303113.

Pełny tekst źródła
Streszczenie:
In the coking process, a large amount of 750℃-800℃ coke-oven gas is produced, and the traditional process is to use circulating water spray to cool the coke-oven gas instantly to 80-90℃, and the sensible heat of the coke-oven gas is wasted. In order to recover sensible heat of coke-oven gas reliably and stably, this paper puts forward a kind of uptube heat exchanger for sensible heat recovery of coke-oven gas based on the problems existing in the past heat exchanger and the characteristics of coke-oven gas itself, and analyzes the heat transfer process equation of heat exchanger.
Style APA, Harvard, Vancouver, ISO itp.
18

ZUNAID, Mohammad. "NUMERICAL STUDY OF PRESSURE DROP AND HEAT TRANSFER IN A STRAIGHT RECTANGULAR AND SEMI CYLINDRICAL PROJECTIONS MICROCHANNEL HEAT SINK". Journal of Thermal Engineering 3, nr 5 (19.09.2017): 1453–65. http://dx.doi.org/10.18186/journal-of-thermal-engineering.338903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ibsen, Claus H., i David Toal. "InDEStruct: engineering advanced heat transfer systems". Open Access Government 36, nr 1 (12.10.2022): 234–37. http://dx.doi.org/10.56367/oag-036-10199.

Pełny tekst źródła
Streszczenie:
InDEStruct: engineering advanced heat transfer systems Within the University of Southampton, Atul Singh – also referred to as ESR1 – works on his PhD within a Horizon 2020 Programme project InDEStruct. His scope within this project is to work on optimisation and design methods to improve decision-making in heat exchanger conceptual design, in other words, a more effective design taking into account multidisciplinary aspects of such designs and reducing the experimental cost required to make decisions on new heat exchanger topologies. Open Access Government interviews members of the team of the InDEStruct project, a Horizon 2020 project which works toward inter-disciplinary design approaches for advanced heat transfer systems.
Style APA, Harvard, Vancouver, ISO itp.
20

ISSHIKI, Naotsugu. "Mixed Phase Flow in Heat Engineering". JAPANESE JOURNAL OF MULTIPHASE FLOW 1, nr 2 (1987): 125–37. http://dx.doi.org/10.3811/jjmf.1.125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Bakhtar, F. "Engineering Thermodynamics, Work and Heat Transfer". Chemical Engineering Science 48, nr 8 (1993): 1541. http://dx.doi.org/10.1016/0009-2509(93)80061-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

GREGORY, TOM. "HEAT-QUILIBRIUM". New Electronics 55, nr 2 (luty 2022): 26–27. http://dx.doi.org/10.12968/s0047-9624(22)60083-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Chen, Z. P., C. L. Yu, J. Y. Zheng i G. H. Zhu. "Heat-transfer analysis of flat steel ribbon-wound cryogenic high-pressure vessel". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, nr 9 (1.09.2008): 1745–51. http://dx.doi.org/10.1243/09544062jmes1011.

Pełny tekst źródła
Streszczenie:
In the past 40 years, more than 7000 layered vessels using flat ribbon-wound cylindrical shells have been manufactured in China. Theoretical as well as experimental investigations show that there are distinct economical and engineering advantages in using such vessels. In this paper, based on the analysis of the heat transfer process in a flat steel ribbon-wound liquid hydrogen high-pressure vessel, a heat transfer model of the walls of the shell and head has been set up. The temperature difference among the interfaces, the heat transfer through the shell and head, and the evaporation rate of the vessel under a steady heat-flow condition has been calculated. The numerical calculations show that such a structure meets the design requirements.
Style APA, Harvard, Vancouver, ISO itp.
24

Mihaela Duinea, Adelaida. "About Modeling and Simulation of Heat Exchange Convective Surfaces of the Steam Generator". International Journal of Engineering Research and Science 3, nr 9 (30.09.2017): 01–07. http://dx.doi.org/10.25125/engineering-journal-ijoer-jul-2017-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ionkin, I. L., P. V. Roslyakov i B. Luning. "Application of Condensing Heat Utilizers at Heat-Power Engineering Objects (Review)". Thermal Engineering 65, nr 10 (20.09.2018): 677–90. http://dx.doi.org/10.1134/s0040601518100038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Tyutin, N. A. "Heat balance equations for a reactor in a heat engineering plant". Refractories and Industrial Ceramics 50, nr 1 (styczeń 2009): 60–61. http://dx.doi.org/10.1007/s11148-009-9133-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wan, Junchi. "The Heat Transfer Coefficient Predictions in Engineering Applications". Journal of Physics: Conference Series 2108, nr 1 (1.11.2021): 012022. http://dx.doi.org/10.1088/1742-6596/2108/1/012022.

Pełny tekst źródła
Streszczenie:
Abstract Most engineering applications have boundary layers; the convective transport of mass, momentum and heat normally occurs through a thin boundary layer close to the wall. It is essential to predict the boundary layer heat transfer phenomenon on the surface of various engineering machines through calculations. The experimental, analogy and numerical methods are the three main methods used to obtain convective heat transfer coefficient. The Reynolds analogy provides a useful method to estimate the heat transfer rate with known surface friction. In the Reynolds analogy, the heat transfer coefficient is independent of the temperature ratio between the wall and the fluid. Other methods also ignore the effect of the temperature ratio. This paper summarizes the methods of predicting heat transfer coefficients in engineering applications. The effects of the temperature ratio between the wall and the fluid on the heat transfer coefficient predictions are studied by summarizing the researches. Through the summary, it can be found that the heat transfer coefficients do show a dependence on the temperature ratio. And these effects are more obvious in turbulent flow and pointing out that the inaccuracy in the determination of the heat transfer coefficient and proposing that the conjugate heat transfer analysis is the future direction of development.
Style APA, Harvard, Vancouver, ISO itp.
28

Jasminská, Natália, Tomáš Brestovič, Ľubica Bednárová, Marián Lázár i Romana Dobáková. "Design of a Hydrogen Compressor Powered by Accumulated Heat and Generated in Metal Hydrides". International Journal of Engineering Research and Science 3, nr 9 (30.09.2017): 35–38. http://dx.doi.org/10.25125/engineering-journal-ijoer-sep-2017-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Shi, Pei Jing, Hong Mei Wang, Wei Zhang i Bin Shi Xu. "Advanced Rapid Forming Technology for Remanufacturing Engineering". Applied Mechanics and Materials 271-272 (grudzień 2012): 386–89. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.386.

Pełny tekst źródła
Streszczenie:
Based on the foreign remanufacturing mode, the new remanufacturing rapid forming technology, which relies mainly on Surface Repair and Performance Improving Method has been explored and practiced. The aim of remanufacturing forming is to renew the original size of the waste components rapidly, and then improve their service performance. The advanced rapid forming technology, especially the high density heat source surface forming technology, is the important technique to carry out rapid forming. Based on the arc heat source, plasma heat source and laser heat source, three kinds of high density heat source remanufacturing forming technologies, such as high speed arc spraying forming technology, micro-arc plasma forming technology, and laser cladding forming technology, have been developed.
Style APA, Harvard, Vancouver, ISO itp.
30

TAKENAKA, Satsuki, Kiyoshi TOKIEDA, Seiichiro YAMAZAKI i Hideaki KIMURA. "ICONE15-10597 ENGINEERING STUDY ON DECOMMISSIONING OF HEAT EXCHANGERS IN TOKAI POWER STATION". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Wang, Li Jun, Xiao Ping Miao, Rui Hai Wang i Bo Wang. "Numerical Simulation on Heat Transfer from Envelope of the Underground Engineering". Advanced Materials Research 320 (sierpień 2011): 657–62. http://dx.doi.org/10.4028/www.scientific.net/amr.320.657.

Pełny tekst źródła
Streszczenie:
Whether the results of the dynamic heat flux from the underground engineering envelope are accurate, may influence the accuracy of calculating the transient heat load and could affect the initial cost and actual operation of the air conditioning system in the underground engineering. Based on the mathematical modeling of heat transfer in the underground engineering envelope, the influence of the model dimension, boundary condition on the soil surface, initial temperature of the soil, the adiabatic distances far from the envelope and the heat transfer coefficient between the envelope surface and the indoor air, the heat transfer mechanism of the underground engineering envelope was studied in terms of the building structure, style of the envelopes and the difference of the locations. For providing the analysis basis to simplified calculation of heat transfer in the underground engineering envelope.
Style APA, Harvard, Vancouver, ISO itp.
32

Han, Ruiping, Kiros Hagos, Xiaoyan Ji, Shaopeng Zhang, Jingjing Chen, Zhuhong Yang, Xiaohua Lu i Changsong Wang. "Review on heat-utilization processes and heat-exchange equipment in biogas engineering". Journal of Renewable and Sustainable Energy 8, nr 3 (maj 2016): 032701. http://dx.doi.org/10.1063/1.4949497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Park, Cheol, Junhyo Kim, Jungpil Noh, Sunchul Huh, Byeongkeun Choi, hanshik Chung i HyoMin Jeong. "Numerical Analysis of Heat Transfer in Unsteady Nanofluids in a Small Pipe with Pulse Pressure". International Journal of Engineering Research and Science 3, nr 8 (31.08.2017): 63–68. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Trabelsi, R., A. C. Seibi, F. Boukadi, W. Chalgham i H. Trabelsi. "Temperature Distribution and Numerical Modeling of Heat Transfer in Block 276 P1-Sand – Part I". International Journal of Engineering Research and Science 3, nr 7 (31.07.2017): 30–40. http://dx.doi.org/10.25125/engineering-journal-ijoer-jul-2017-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Manikanta, R. V., D. V. N. Prabhakar i N. V. S. Shankar. "Effect of Twisted Tape Insert On Heat Transfer During Flow Through A Pipe Using CFD". International Journal of Engineering Research and Science 3, nr 5 (31.05.2017): 58–63. http://dx.doi.org/10.25125/engineering-journal-ijoer-may-2017-20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ochkov, V. F., K. A. Orlov, E. V. Dorokhov i V. M. Lavygin. "Heat engineering: computer calculations with measurement units". Vestnik IGEU, nr 1 (2016): 10–18. http://dx.doi.org/10.17588/2072-2672.2016.1.010-018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Bansal, Pradeep, i Lorenzo Cremaschi. "Advances in refrigeration and heat transfer engineering". Science and Technology for the Built Environment 21, nr 5 (13.05.2015): 481–82. http://dx.doi.org/10.1080/23744731.2015.1048623.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Davidge, R. W. "Perspectives for engineering ceramics in heat engines". High Temperature Technology 5, nr 1 (luty 1987): 13–21. http://dx.doi.org/10.1080/02619180.1987.11753336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kursky, A. S., V. V. Kalygin i I. I. Semidotsky. "Low-power nuclear engineering for heat production". Thermal Engineering 59, nr 5 (15.04.2012): 345–51. http://dx.doi.org/10.1134/s0040601512050060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Chen, Shipu, i Tom Bell. "Innovation in Heat Treatment and Surface Engineering". International Heat Treatment and Surface Engineering 1, nr 1 (styczeń 2007): 1–2. http://dx.doi.org/10.1179/174951407x169295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Singh, Amanjot, i Anil Grover. "Genetic engineering for heat tolerance in plants". Physiology and Molecular Biology of Plants 14, nr 1-2 (kwiecień 2008): 155–66. http://dx.doi.org/10.1007/s12298-008-0014-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Delaunois, Fabienne, Francine Roudet i Véronique Vitry. "Trends in heat treatment and surface engineering". Metallurgical Research & Technology 115, nr 4 (2018): 401. http://dx.doi.org/10.1051/metal/2018060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ol’khovskii, G. G. "Status and Prospects of Heat-Power Engineering". Power Technology and Engineering 39, nr 2 (marzec 2005): 104–13. http://dx.doi.org/10.1007/s10749-005-0033-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Martynenko, G. M. "Soyuzteplostroi — 80 years in heat engineering construction". Refractories and Industrial Ceramics 49, nr 5 (wrzesień 2008): 325–29. http://dx.doi.org/10.1007/s11148-009-9094-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Norman, Chris. "The chemical engineering guide to heat transfer". International Journal of Heat and Fluid Flow 8, nr 2 (czerwiec 1987): 92. http://dx.doi.org/10.1016/0142-727x(87)90002-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Gerasimov, G. Ya, S. A. Losev i V. N. Makarov. "Avogadro program: Environmental problems of heat engineering". Journal of Engineering Physics and Thermophysics 69, nr 6 (listopad 1996): 688–93. http://dx.doi.org/10.1007/bf02606101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Rudenko, A. I., V. N. Savina, A. P. Nishchik i A. E. Koloskov. "Toward calculation of heat-engineering characteristics of two-phase thermosiphons filled with ethylene glycol II. Heat-engineering characteristics". Journal of Engineering Physics and Thermophysics 71, nr 2 (marzec 1998): 198–201. http://dx.doi.org/10.1007/bf02681534.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Qi, Zi Shu, Qing Gao, Zhen Hai Gao, Yan Liu i Li Bai. "The Research on the Influence Law of the Fluid Temperature in Ground Heat Exchange on System Operation". Advanced Materials Research 960-961 (czerwiec 2014): 555–58. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.555.

Pełny tekst źródła
Streszczenie:
In the paper, by studying the underground heat exchanger heat transfer mode, the computing platform for ground source heat pump system was established. Through a engineering case, the influence character of the fluid temperature at the outlet of ground heat exchange on the length of system, the fluid temperature in ground heat exchange, and the heat pump power consumption were analyzed, which provide an approach for engineering design and operation prediction, and for the thermodynamic analysis of performance of system year by year and prospective study to guide the engineering practice.
Style APA, Harvard, Vancouver, ISO itp.
49

Wang, Li Jun, Xiao Ping Miao, Rui Hai Wang, Wei Hua Li, Jun Yang, Yong Li, Feng Jiang i Xiao Feng Zhou. "The Systems Emulation Study of the Dynamic Heat Load for Underground Structure Envelope". Applied Mechanics and Materials 291-294 (luty 2013): 1847–50. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1847.

Pełny tekst źródła
Streszczenie:
Whether the results of the dynamic heat flux from the underground engineering envelope are accurate, may influence the accuracy of calculating the transient heat load and could affect the initial cost and actual operation of the air-conditioning system in the underground engineering. The paper is to find out the mechanisms of the heat transfer in the underground engineering envelope. The mechanisms of heat transfer in normal underground engineering envelope, simplified calculation for heat transfer in the underground engineering envelope and the dynamic emulation of the heat load of the underground engineering envelope.
Style APA, Harvard, Vancouver, ISO itp.
50

Sun, Jian, i Wei Qiang Liu. "Effect of Heat Leading of Windward Leading Edge Using Heat Pipe with Porous". Advanced Materials Research 217-218 (marzec 2011): 674–79. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.674.

Pełny tekst źródła
Streszczenie:
By the uses of finite element method and finite volume method, we calculated the solid domain and fluid domain of windward leading edge which is flying under one condition. And the paper proved that heat pipes which covered on the leading edge have effect on thermal protection. The maximum temperature of the head decreased 12.2%. And the minimum temperature of after-body increased 8.85%. Achieving the transfer of heat from head to after-body, the front head of the thermal load was weakened and the ability of leading edge thermal protection was strengthen. The effect of the thickness of heat pipe, black level of covering materials and equivalent thermal conductivity of heat pipes on the wall temperature were discussed for the selection of thermal protection materials of windward leading edge to provide a frame of reference.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii