Gotowa bibliografia na temat „Heat and mass transfer analysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Heat and mass transfer analysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Heat and mass transfer analysis"
Ishii, Koji, Yuji Kodama i Toru Maekawa. "Microscopic dynamic analysis of heat and mass transfer". Nonlinear Analysis: Theory, Methods & Applications 30, nr 5 (grudzień 1997): 2797–802. http://dx.doi.org/10.1016/s0362-546x(97)00369-6.
Pełny tekst źródłaAziz Rohman Hakim, Abdul, i Engkos Achmad Kosasih. "ANALYSIS OF HEAT AND MASS TRANSFER ON COOLING TOWER FILL". Jurnal Forum Nuklir 14, nr 1 (29.03.2020): 25. http://dx.doi.org/10.17146/jfn.2020.14.1.5812.
Pełny tekst źródłaLi, Qiong, Yong Sheng Niu, Yi Xiang Sun i Zhe Liu. "Heat and Mass Transfer Analysis of Mine Exhaust Air Heat Exchanger". Advanced Materials Research 765-767 (wrzesień 2013): 3018–22. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.3018.
Pełny tekst źródłaWANG, ZAN-SHE, ZHAO-LIN GU, GUO-ZHENG WANG, FENG CUI i SHI-YU FENG. "ANALYSIS ON MEMBRANE HEAT EXCHANGER APPLIED TO ABSORPTION CHILLER". International Journal of Air-Conditioning and Refrigeration 19, nr 03 (wrzesień 2011): 167–75. http://dx.doi.org/10.1142/s2010132511000557.
Pełny tekst źródłaChati, T., K. Rahmani, T. T. Naas i A. Rouibah. "Moist Air Flow Analysis in an Open Enclosure. Part A: Parametric Study". Engineering, Technology & Applied Science Research 11, nr 5 (12.10.2021): 7571–77. http://dx.doi.org/10.48084/etasr.4344.
Pełny tekst źródłaMagherbi, M., H. Abbassi, N. Hidouri i A. Brahim. "Second Law Analysis in Convective Heat and Mass Transfer". Entropy 8, nr 1 (2.02.2006): 1–17. http://dx.doi.org/10.3390/e8010001.
Pełny tekst źródłaTANOUE, Ken-ichiro, Tatsuo NISHIMURA, Koichi GODA i Junichi NODA. "Heat and Mass Transfer Analysis During Torrefaction of Bamboo". Journal of Smart Processing 5, nr 3 (2016): 160–65. http://dx.doi.org/10.7791/jspmee.5.160.
Pełny tekst źródłaBertola, V., i E. Cafaro. "Scale-Size Analysis of Heat and Mass Transfer Correlations". Journal of Thermophysics and Heat Transfer 17, nr 2 (kwiecień 2003): 293–95. http://dx.doi.org/10.2514/2.6768.
Pełny tekst źródłaYe, Hong, Zhi Yuan i Shuanqin Zhang. "The Heat and Mass Transfer Analysis of a Leaf". Journal of Bionic Engineering 10, nr 2 (czerwiec 2013): 170–76. http://dx.doi.org/10.1016/s1672-6529(13)60212-7.
Pełny tekst źródłaALKLAIBI, A., i N. LIOR. "Heat and mass transfer resistance analysis of membrane distillation". Journal of Membrane Science 282, nr 1-2 (5.10.2006): 362–69. http://dx.doi.org/10.1016/j.memsci.2006.05.040.
Pełny tekst źródłaRozprawy doktorskie na temat "Heat and mass transfer analysis"
Mattingly, Brett T. (Brett Thomas). "Containment analysis incorporating boundary layer heat and mass transfer techniques". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/84749.
Pełny tekst źródłaTien, Hwa-Chong. "Analysis of flow, heat and mass transfer in porous insulations /". The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487672631599499.
Pełny tekst źródłaHaq, Inam Ul. "Heat and mass transfer analysis for crud coated PWR fuel". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6373.
Pełny tekst źródłaHublitz, Inka. "Heat and mass transfer of a low pressure Mars greenhouse simulation and experimental analysis /". [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013488.
Pełny tekst źródłaBohra, Lalit Kumar. "Analysis of Binary Fluid Heat and Mass Transfer in Ammonia-Water Absorption". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19780.
Pełny tekst źródłaOjada, Ejiro Stephen. "Analysis of mass transfer by jet impingement and study of heat transfer in a trapezoidal microchannel". [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003297.
Pełny tekst źródłaDuda, Anna. "Numerical analysis of heat and mass transfer processes within an infant radiant warmer". Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.555901.
Pełny tekst źródłaSubramaniam, Vishwanath. "Computational analysis of binary-fluid heat and mass transfer in falling films and droplets". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26485.
Pełny tekst źródłaCommittee Chair: Garimella, Srinivas; Committee Member: Fuller, Tom; Committee Member: Jeter, Sheldon; Committee Member: Lieuwen, Tim; Committee Member: Wepfer, William. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Olanrewaju, Anuoluwapo Mary. "Analysis of boundary layer flow of nanofluid with the characteristics of heat and mass transfer". Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/2157.
Pełny tekst źródłaNanofluid, which was first discovered by the Argonne laboratory, is a nanotechnology- based heat transfer fluid. This fluid consists of particles which are suspended inside conventional heat transfer liquid or base fluid. The purpose of this suspension is for enhancing thermal conductivity and convective heat transfer performance of this base fluid. The name nanofluid came about as a result of the nanometer- sized particles of typical length scales 1-100nm which are stably suspended inside of the base fluids. These nanoparticles are of both physical and chemical classes and are also produced by either the physical process or the chemical process. Nanofluid has been discovered to be the best option towards accomplishing the enhancement of heat transfer through fluids in different unlimited conditions as well as reduction in the thermal resistance by heat transfer liquids. Various manufacturing industries and engineering processes such as transportation, electronics, food, medical, textile, oil and gas, chemical, drinks e.t.c, now aim at the use of this heat transfer enhancement fluid. Advantages such organisations can obtain from this fluid includes, reduced capital cost, reduction in size of heat transfer system and improvement of energy efficiencies. This research has been able to solve numerically, using Maple 12 which uses a fourth- fifth order Runge -kutta- Fehlberg algorithm alongside shooting method, a set of nonlinear coupled differential equations together with their boundary conditions, thereby modelling the heat and mass transfer characteristics of the boundary layer flow of the nanofluids. Important properties of these nanofluids which were considered are viscosity, thermal conductivity, density, specific heat and heat transfer coefficients and microstructures (particle shape, volume concentration, particle size, distribution of particle, component properties and matrixparticle interface). Basic fluid dynamics equations such as the continuity equation, linear momentum equation, energy equation and chemical species concentration equations have also been employed.
Torres, Alvarez Juan Felipe. "A study of heat and mass transfer in enclosures by phase-shifting interferometry and bifurcation analysis". Thesis, Ecully, Ecole centrale de Lyon, 2014. http://www.theses.fr/2014ECDL0001/document.
Pełny tekst źródłaFundamental questions concerning the mass diffusion properties of biological systems under isothermal and non-isothermal conditions still remain due to the lack of experimental techniques capable of visualizing and measuring mass diffusion phenomena with a high accuracy. As a consequence, there is a need to develop new experimental techniques that can deepen our understanding of mass diffusion. Moreover, steady natural convection in a tilted three-dimensional rectangular enclosure has not yet been studied. This tilt can be a slight defect of the experimental device or can be imposed on purpose. In this dissertation, heat and mass transfer phenomena in parallelepiped enclosures are studied focusing on convectionless thermodiffusion and on natural convection of pure fluids (without thermodiffusion). Mass diffusion is studied with a novel optical technique, while steady natural convection is first studied in detail with an improved numerical analysis and then with the same optical technique initially developed for diffusion measurements. A construction of a precise optical interferometer to visualize and measure mass diffusion is described. The interferometer comprises a polarizing Mach–Zehnder interferometer, a rotating polariser, a CCD camera, and an original image-processing algorithm. A method to determine the isothermal diffusion coefficient as a function of concentration is proposed. This method uses an inverse analysis coupled with a numerical calculation in order to determine the diffusion coefficients from the transient concentration profiles measured with the optical system. Furthermore, thermodiffusion of protein molecules is visualized for the first time. The proposed method has three main advantages in comparison to similar methods: (i) reduced volume sample, (ii) short measurement time, and (iii) increased hydrodynamic stability of the system. These methods are validated by determining the thermophysical properties of benchmark solutions. The optical technique is first applied to study isothermal diffusion of protein solutions in: (a) dilute binary solutions, (b) binary solutions with a wide concentration range, and (c) dilute ternary solutions. The results show that (a) the isothermal diffusion coefficient in dilute systems decreases with molecular mass, as roughly predicted by the Stokes-Einstein equation; (b) BSA protein has a hard-sphere-like diffusion behaviour and lysozyme protein a soft sphere characteristic; and (c) the cross-term effect between the diffusion species in a dilute ternary system is negligible. The optical technique is then applied to (d) non-isothermal dilute binary solutions, revealing that that the aprotinin (6.5 kDa) and lysozyme (14.3 kDa) molecules are thermophilic and thermophobic, respectively, when using water as solvent at room temperature. Finally, the optical technique is applied to study Rayleigh-Bénard convection in a horizontal cubical cavity. Since natural convection can be studied in more depth by solving the Navier-Stokes equations, a bifurcation analysis is proposed to conduct a thorough study of natural convection in three-dimensional parallelepiped cavities. Here, a continuation method is developed from a three-dimensional spectral finite element code. The proposed numerical method is particularly well suited for the studies involving complex bifurcation diagrams of three-dimensional convection in rectangular parallelepiped cavities. This continuation method allows the calculation of solution branches, the stability analysis of the solutions along these branches, the detection and precise direct calculation of the bifurcation points, and the jump to newly detected stable or unstable branches, all this being managed by a simple continuation algorithm. This can be used to calculate the bifurcation diagrams describing the convection in tilted cavities. [...]
Książki na temat "Heat and mass transfer analysis"
Eckert, E. R. G. Analysis of heat and mass transfer. Washington: Hemisphere Pub. Corp., 1987.
Znajdź pełny tekst źródła1966-, Robinson Anne Skaja, i Wagner Norman Joseph 1962-, red. Mass and heat transfer: Analysis of mass contactors and heat exchangers. Cambridge: Cambridge University Press, 2008.
Znajdź pełny tekst źródłaAlifanov, O. M. Inverse heat transfer problems. Berlin: Springer-Verlag, 1994.
Znajdź pełny tekst źródłaAn introduction to mass and heat transfer: Principles of analysis and design. New York: John Wiley & Sons, 1998.
Znajdź pełny tekst źródłaNecati, Özışık M., red. Unified analysis and solutions of heat and mass diffusion. New York: Dover, 1994.
Znajdź pełny tekst źródłaDelgado, J. M. P. Q., Antonio Gilson Barbosa de Lima i Marta Vázquez da Silva, red. Numerical Analysis of Heat and Mass Transfer in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30532-0.
Pełny tekst źródłaBarbosa, Lima Antonio Gilson, Silva Marta Vázquez i SpringerLink (Online service), red. Numerical Analysis of Heat and Mass Transfer in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaShang, De-Yi. Free Convection Film Flows and Heat Transfer: Laminar free Convection of Phase Flows and Models for Heat-Transfer Analysis. Wyd. 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaLuo, Lingai. Heat and Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach. London: Springer London, 2013.
Znajdź pełny tekst źródłaYarin, L. P. The Pi-Theorem: Applications to Fluid Mechanics and Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Heat and mass transfer analysis"
Shang, De-Yi. "New Similarity Analysis Method for Laminar Free Convection Boundary Layer and Film Flows". W Heat and Mass Transfer, 53–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28983-5_4.
Pełny tekst źródłaDe Angelis, Alessandra, Onorio Saro, Giulio Lorenzini, Stefano D’Elia i Marco Medici. "Numerical Analysis". W Simplified Models for Assessing Heat and Mass Transfer in Evaporative Towers, 69–75. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-031-79360-8_9.
Pełny tekst źródłaBarman, H., i R. S. Das. "Simultaneous Heat and Mass Transfer Analysis in Falling Film Absorber". W Advances in Mechanical Engineering, 1001–11. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0124-1_89.
Pełny tekst źródłaBuchholz, Niklas, i Andrea Luke. "Analysis of the Influence of Thermophysical Properties on the Coupled Heat and Mass Transfer in Pool Boiling". W Advances in Heat Transfer and Thermal Engineering, 147–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_27.
Pełny tekst źródłaKhan, Shafat Ahmad, Fazia Taj, Samira Habib, Falak Shawl, Aamir Hussain Dar i Madhuresh Dwivedi. "CFD Analysis of Drying of Cereal, Fruits, and Vegetables". W Advanced Computational Techniques for Heat and Mass Transfer in Food Processing, 235–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003159520-11.
Pełny tekst źródłaZgurovsky, M. Z., i V. S. Mel’nik. "Mathematical Formalization and Computational Realization of Diffusion and Heat-Mass Transfer Processes". W Nonlinear Analysis and Control of Physical Processes and Fields, 451–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18770-4_10.
Pełny tekst źródłaZgurovsky, M. Z., i V. S. Mel’nik. "Problems of Control of Physical Processes of Diffusion and Heat-Mass Transfer". W Nonlinear Analysis and Control of Physical Processes and Fields, 431–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18770-4_9.
Pełny tekst źródłaSelimefendigil, Fatih, Seda Özcan Çoban i Hakan F. Öztop. "Convective Drying Analysis of Different Shaped Moving Porous Objects in a Channel with Area Expansion by Using Finite Element Method". W Advanced Computational Techniques for Heat and Mass Transfer in Food Processing, 67–90. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003159520-4.
Pełny tekst źródłaGhoulem, Marouen, Khaled El Moueddeb i Ezzedine Nehdi. "Numerical Analysis of Heat and Mass Transfer in a Naturally Ventilated Greenhouse with Plants". W Advances in Science, Technology & Innovation, 265–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00808-5_61.
Pełny tekst źródłaDey, Debasish, i Madhurya Hazarika. "Entropy Generation Analysis of MHD Fluid Flow Over Stretching Surface with Heat and Mass Transfer". W Emerging Technologies in Data Mining and Information Security, 57–67. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4193-1_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Heat and mass transfer analysis"
Vermeersch, B., i G. De Mey. "Sinusoidal regime analysis of heat transfer in microelectronic systems". W HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060431.
Pełny tekst źródłaCiambelli, P., M. G. Meo, P. Russo i S. Vaccaro. "Sensitivity analysis of a computer code for modelling confined fires". W HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060301.
Pełny tekst źródłaSerag-Eldin, M. A. "Analysis of a new solar chimney plant design for mountainous regions". W HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060421.
Pełny tekst źródłaYuan, J., C. Wilhelmsson i B. Sundén. "Analysis of water condensation and two-phase flow in a channel relevant for plate heat exchangers". W HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060341.
Pełny tekst źródłaKulkarni, Ratnakar, i Paul Cooper. "NATURAL CONVECTION IN AN ENCLOSURE WITH LOCALISED HEATING AND COOLING: COMPARISON OF FLOW ELEMENT ANALYSIS AND EXPERIMENTS". W Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.80.
Pełny tekst źródłaSlavica, Eremic, Ilic Mirjana, Vasiljevic Bogosav i Vranic Kosta. "Analysis Of Influence Of Leading Away The Heat From The Prosthetic Appliances Upon The Feeling Of Their Users". W Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.650.
Pełny tekst źródłaShin, Chee Burm, Eun Kyum Kim i Lae Hyun Kim. "HEAT TRANSFER ANALYSIS OF PIPE COOLING FOR MASS CONCRETE". W International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.2590.
Pełny tekst źródłaVala, J., i S. Št’astník. "On Two‐Scale Modelling of Heat and Mass Transfer". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990989.
Pełny tekst źródłaYue, Min, Katherine Dunphy, Jerry Jenkins, Christopher Dames, Guanghua Wu i Arun Majumdar. "A Microfluidic Device for Studying Mass Transfer Effects in Biomolecular Analysis". W International Heat Transfer Conference 12. Connecticut: Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.3990.
Pełny tekst źródłaJancskar, I., i A. Ivanyi. "Wavelet Analysis of IR-images of a Turbulent Steam Flow". W Turbulence, Heat and Mass Transfer 5. Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. New York: Begellhouse, 2006. http://dx.doi.org/10.1615/ichmt.2006.turbulheatmasstransf.440.
Pełny tekst źródłaRaporty organizacyjne na temat "Heat and mass transfer analysis"
Pesaran, A. A. Heat and mass transfer analysis of a desiccant dehumidifier matrix. Office of Scientific and Technical Information (OSTI), lipiec 1986. http://dx.doi.org/10.2172/5438707.
Pełny tekst źródłaMaclaine-Cross, I. L., i A. A. Pesaran. Heat and Mass Transfer Analysis of Dehumidifiers Using Adiabatic Transient Tests. Office of Scientific and Technical Information (OSTI), kwiecień 1986. http://dx.doi.org/10.2172/1129251.
Pełny tekst źródłaZyvoloski, G., Z. Dash i S. Kelkar. FEHM: finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), marzec 1988. http://dx.doi.org/10.2172/5495517.
Pełny tekst źródłaZyvoloski, G., Z. Dash i S. Kelkar. FEHMN 1.0: Finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), kwiecień 1991. http://dx.doi.org/10.2172/138080.
Pełny tekst źródłaGoldstein, R. J., i M. Y. Jabbari. The impact of separated flow on heat and mass transfer. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/6546146.
Pełny tekst źródłaBell, J., i L. Hand. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements. Office of Scientific and Technical Information (OSTI), kwiecień 2005. http://dx.doi.org/10.2172/918405.
Pełny tekst źródłaDrost, Kevin, Goran Jovanovic i Brian Paul. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage. Office of Scientific and Technical Information (OSTI), wrzesień 2015. http://dx.doi.org/10.2172/1225296.
Pełny tekst źródłaZyvoloski, G., Z. Dash i S. Kelkar. FEHMN 1.0: Finite element heat and mass transfer code; Revision 1. Office of Scientific and Technical Information (OSTI), maj 1992. http://dx.doi.org/10.2172/138419.
Pełny tekst źródłaKukuck, S. Heat and mass transfer through gypsum partitions subjected to fire exposures. Gaithersburg, MD: National Institute of Standards and Technology, 2009. http://dx.doi.org/10.6028/nist.ir.7461.
Pełny tekst źródłaPrucha, R. H. Heat and mass transfer in the Klamath Falls, Oregon, geothermal system. Office of Scientific and Technical Information (OSTI), maj 1987. http://dx.doi.org/10.2172/6247658.
Pełny tekst źródła