Gotowa bibliografia na temat „Hardy's inequalities”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hardy's inequalities”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Hardy's inequalities"

1

Chen, Xu, Hong-Yi Su, Zhen-Peng Xu, Yu-Chun Wu i Jing-Ling Chen. "Quantum nonlocality enhanced by homogenization". International Journal of Quantum Information 12, nr 06 (wrzesień 2014): 1450040. http://dx.doi.org/10.1142/s0219749914500403.

Pełny tekst źródła
Streszczenie:
Homogenization proposed in [Y.-C Wu and M. Żukowski, Phys. Rev. A 85 (2012) 022119] is a procedure to transform a tight Bell inequality with partial correlations into a full-correlation form that is also tight. In this paper, we check the homogenizations of two families of n-partite Bell inequalities: the Hardy inequality and the tight Bell inequality without quantum violation. For Hardy's inequalities, their homogenizations bear stronger quantum violation for the maximally entangled state; the tight Bell inequalities without quantum violation give the boundary of quantum and supra-quantum, but their homogenizations do not have the similar properties. We find their homogenization are violated by the maximally entangled state. Numerically computation shows the the domains of quantum violation of homogenized Hardy's inequalities for the generalized GHZ states are smaller than those of Hardy's inequalities.
Style APA, Harvard, Vancouver, ISO itp.
2

Lefèvre, Pascal. "Weighted discrete Hardy's inequalities". Ukrains’kyi Matematychnyi Zhurnal 75, nr 7 (25.07.2023): 1009–12. http://dx.doi.org/10.37863/umzh.v75i7.7201.

Pełny tekst źródła
Streszczenie:
UDC 517.5 We give a short proof of a weighted version of the discrete Hardy inequality. This includes the known case of classical monomial weights with optimal constant. The proof is based on the ideas of the short direct proof given recently in [P. Lefèvre, Arch. Math. (Basel), <strong>114</strong>, № 2, 195–198 (2020)].
Style APA, Harvard, Vancouver, ISO itp.
3

Oguntuase, J., i B. Popoola. "Refinement of Hardy's Inequalities Involving Many Functions Via Superquadratic Functions". Annals of the Alexandru Ioan Cuza University - Mathematics 57, nr 2 (1.01.2011): 271–83. http://dx.doi.org/10.2478/v10157-011-0026-z.

Pełny tekst źródła
Streszczenie:
Refinement of Hardy's Inequalities Involving Many Functions Via Superquadratic FunctionsSome new refined Hardy type integral inequalities involvingnfunctions (n∈ Z+) via superquadratic functions are established forp≥ 2 and their dual inequalities are also derived. In particular, the results obtained complement and improve some recent results of Oguntuase and Persson.
Style APA, Harvard, Vancouver, ISO itp.
4

Bicheng, Yang, i Lokenath Debnath. "Generalizations of Hardy's integral inequalities". International Journal of Mathematics and Mathematical Sciences 22, nr 3 (1999): 535–42. http://dx.doi.org/10.1155/s0161171299225355.

Pełny tekst źródła
Streszczenie:
This paper deals with some new generalizations of Hardy's integral inequalities. Some cases concerning whether the constant factors involved in these inequalities are best possible are discussed in some detail.
Style APA, Harvard, Vancouver, ISO itp.
5

SATAKE, Makoto. "Hardy's inequalities for Laguerre expansions". Journal of the Mathematical Society of Japan 52, nr 1 (styczeń 2000): 17–24. http://dx.doi.org/10.2969/jmsj/05210017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Krnić, Mario, i Josip Pečarić. "General Hilbert's and Hardy's inequalities". Mathematical Inequalities & Applications, nr 1 (2005): 29–51. http://dx.doi.org/10.7153/mia-08-04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

GALAKTIONOV, VICTOR A. "ON EXTENSIONS OF HARDY'S INEQUALITIES". Communications in Contemporary Mathematics 07, nr 01 (luty 2005): 97–120. http://dx.doi.org/10.1142/s0219199705001659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sababheh, Mohammad. "Hardy Inequalities on the Real Line". Canadian Mathematical Bulletin 54, nr 1 (1.03.2011): 159–71. http://dx.doi.org/10.4153/cmb-2010-091-8.

Pełny tekst źródła
Streszczenie:
AbstractWe prove that some inequalities, which are considered to be generalizations of Hardy's inequality on the circle, can be modified and proved to be true for functions integrable on the real line. In fact we would like to show that some constructions that were used to prove the Littlewood conjecture can be used similarly to produce real Hardy-type inequalities. This discussion will lead to many questions concerning the relationship between Hardy-type inequalities on the circle and those on the real line.
Style APA, Harvard, Vancouver, ISO itp.
9

Ruzhansky, Michael, i Daulti Verma. "Hardy inequalities on metric measure spaces". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, nr 2223 (marzec 2019): 20180310. http://dx.doi.org/10.1098/rspa.2018.0310.

Pełny tekst źródła
Streszczenie:
In this note, we give several characterizations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardy's original inequality. We give examples obtaining new weighted Hardy inequalities on R n , on homogeneous groups, on hyperbolic spaces and on Cartan–Hadamard manifolds. We note that doubling conditions are not required for our analysis.
Style APA, Harvard, Vancouver, ISO itp.
10

C˘iz˘mes˘ija, Aleksandra, i Josip Pec˘arić. "Some new generalisations of inequalities of Hardy and Levin–Cochran–Lee". Bulletin of the Australian Mathematical Society 63, nr 1 (luty 2001): 105–13. http://dx.doi.org/10.1017/s000497270001916x.

Pełny tekst źródła
Streszczenie:
In this paper finite versions of Hardy's discrete, Hardy's integral and the Levin–Cochran–Lee inequalities will be considered and some new generalisations of these inequalities will be derived. Moreover, it will be shown that the constant factors involved in the right-hand sides of the integral results obtained are the best possible.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Hardy's inequalities"

1

Irvine, William Thomas Mark. "Hardy's thought experiment, Bell's inequalities and entanglement from photonic crystals". Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442452.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tidblom, Jesper. "Improved Lp Hardy Inequalities". Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-615.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wedestig, Anna. "Weighted inequalities of Hardy-type and their limiting inequalities /". Luleå, 2003. http://epubl.luth.se/1402-1544/2003/17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Johansson, Maria. "Hardy and Carleman type inequalities /". Luleå, 2004. http://epubl.luth.se/1402-1757/2004/81.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Handley, G. D. "Hilbert and Hardy type inequalities /". Connect to thesis, 2005. http://eprints.unimelb.edu.au/archive/00000818.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Johansson, Maria. "Carleman type inequalities and Hardy type inequalities for monotone functions /". Luleå : Luleå University of Technology, 2007. http://epubl.ltu.se/1402-1544/2007/53/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Routin, Eddy. "Local Tb theorems and Hardy type inequalities". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00656023.

Pełny tekst źródła
Streszczenie:
In this thesis, we study local Tb theorems for singular integral operators in the setting of spaces of homogeneous type. We give a direct proof of the local Tb theorem with L^2 integrability on the pseudo- accretive system. Our argument relies on the Beylkin-Coifman-Rokhlin algorithm applied in adapted Haar wavelet basis and some stopping time results. Motivated by questions of S. Hofmann, we extend it to the case when the integrability conditions are lower than 2, with an additional weak boundedness type hypothesis, which incorporates some Hardy type inequalities. We study the possibility of relaxing the support conditions on the pseudo-accretive system to a slight enlargement of the dyadic cubes. We also give a result in the case when, for practical reasons, hypotheses on the pseudo-accretive system are made on balls rather than dyadic cubes. Finally we study the particular case of perfect dyadic operators for which the proof gets much simpler. Our argument gives us the opportunity to study Hardy type inequalities. The latter are well known in the Euclidean setting, but seem to have been overlooked in spaces of homogeneous type. We prove that they hold without restriction in the dyadic setting. In the more general case of a ball B and its corona 2B\B, they can be obtained from some geometric conditions relative to the distribution of points in the homogeneous space. For example, we prove that some relative layer decay property suffices. We also prove that this property is implied by the monotone geodesic property of Tessera. Finally, we give some explicit examples and counterexamples in the complex plane to illustrate the relationship between the geometry of the homogeneous space and the validity of the Hardy type inequalities.
Style APA, Harvard, Vancouver, ISO itp.
8

Abuelela, Waleed Mostafa Kamal Abdelfatah. "Hardy type inequalities for non-convex domains". Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1268/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chen, Tieling. "Weak and strong inequalities for Hardy type operators". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58204.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Okpoti, Christopher Adjei. "Weight characterizations of Hardy and Carleman type inequalities /". Luleå : Department of Mathematics, Luleå University of Technology, 2006. http://epubl.ltu.se/1402-1544/2006/36/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Hardy's inequalities"

1

Grosse-Erdmann, Karl-Goswin. The blocking technique: Weighted mean operators and Hardy's inequality. Berlin: Springer, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Opic, B. Hardy-type inequalities. Harlow, Essex, England: Longman Scientific & Technical, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Opic, B. Hardy-type inequalities. Harlow, Essex, England: Longman Scientific & Technical, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1944-, Persson Lars Erik, red. Weighted inequalities of Hardy type. River Edge, N.J: World Scientific, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ruzhansky, Michael. Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities. Cham: Springer Nature, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ruzhansky, Michael, i Durvudkhan Suragan. Hardy Inequalities on Homogeneous Groups. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02895-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1924-, Everitt W. N., London Mathematical Society i International Conference on Inequalities (1987 : University of Birmingham), red. Inequalities: Fifty years on from Hardy, Littlewood, and Pólya : proceedings of the international conference. New York: M. Dekker, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Agarwal, Ravi P., Donal O'Regan i Samir H. Saker. Hardy Type Inequalities on Time Scales. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44299-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Amrein, Werner O. Hardy type inequalities for abstract differential operators. Providence, R.I., USA: American Mathematical Society, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rubio de Francia, J.-L., 1949-, red. Weighted norm inequalities and related topics. Amsterdam: North-Holland, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Hardy's inequalities"

1

Balinsky, Alexander A., W. Desmond Evans i Roger T. Lewis. "Hardy, Sobolev, and CLR Inequalities". W The Analysis and Geometry of Hardy's Inequality, 1–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Balinsky, Alexander A., W. Desmond Evans i Roger T. Lewis. "Hardy, Sobolev, Maz’ya (HSM) Inequalities". W The Analysis and Geometry of Hardy's Inequality, 135–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Balinsky, Alexander A., W. Desmond Evans i Roger T. Lewis. "Inequalities and Operators Involving Magnetic Fields". W The Analysis and Geometry of Hardy's Inequality, 165–212. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Triebel, Hans. "Hardy inequalities". W The Structure of Functions, 235–42. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8257-6_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Liflyand, Elijah. "Hardy Inequalities". W Pathways in Mathematics, 131–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81892-0_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mitrinović, D. S., J. E. Pečarić i A. M. Fink. "Hardy’s, Carleman’s and Related Inequalities". W Inequalities Involving Functions and Their Integrals and Derivatives, 143–86. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3562-7_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ghoussoub, Nassif, i Amir Moradifam. "Weighted Hardy inequalities". W Mathematical Surveys and Monographs, 45–58. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/187/04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ghoussoub, Nassif, i Amir Moradifam. "General Hardy inequalities". W Mathematical Surveys and Monographs, 125–41. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/187/09.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Agarwal, Ravi P., Shusen Ding i Craig Nolder. "Hardy–Littlewood inequalities". W Inequalities for Differential Forms, 1–56. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68417-8_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kufner, Alois. "Overdetermined Hardy inequalities". W General Inequalities 7, 391. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8942-1_31.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Hardy's inequalities"

1

EVANS, W. D. "RECENT RESULTS ON HARDY AND RELLICH INEQUALITIES". W Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

ESTEBAN, MARIA J., i MICHAEL LOSS. "SELF-ADJOINTNESS VIA PARTIAL HARDY-LIKE INEQUALITIES". W Proceedings of the QMath10 Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812832382_0004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Abramovich, Shoshana, Lars-Erik Persson i Natasha Samko. "On some new developments of Hardy-type inequalities". W 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4765570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

TERTIKAS, A., i N. B. ZOGRAPHOPOULOS. "OPTIMIZING IMPROVED HARDY INEQUALITIES FOR THE BIHARMONIC OPERATOR". W Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sabitbek, Bolys, Durvudkhan Suragan i Nurgissa Yessirkegenov. "Improved critical Hardy inequalities on 2-dimensional quasi-balls". W INTERNATIONAL CONFERENCE “FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS” (FAIA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5000606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sulaiman, W. T. "Hardy‐Hilbert’s Integral Inequalities for Convex and Concave Functions". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990975.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kutev, Nikolai, i Tsviatko Rangelov. "Sharp Hardy inequalities in an exterior of a ball". W SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kutev, Nikolai, i Tsviatko Rangelov. "Applications of Hardy inequalities for some singular parabolic equations". W EIGHTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0083550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sabitbek, Bolys. "On Hardy and Rellich type inequalities for an Engel-type operator". W INTERNATIONAL CONFERENCE “FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS” (FAIA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5000640.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

"Hardy-type inequalities with additional terms and Lamb-type parametric equations". W Уфимская осенняя математическая школа - 2022. Т.1. Baskir State University, 2022. http://dx.doi.org/10.33184/mnkuomsh1t-2022-09-28.49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii