Gotowa bibliografia na temat „Hard Electron Energy Spectrum”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hard Electron Energy Spectrum”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hard Electron Energy Spectrum"
Rich, David, Diling Zhu, James Turner, Dehong Zhang, Bruce Hill i Yiping Feng. "The LCLS variable-energy hard X-ray single-shot spectrometer". Journal of Synchrotron Radiation 23, nr 1 (1.01.2016): 3–9. http://dx.doi.org/10.1107/s1600577515022559.
Pełny tekst źródłaЧариков, Ю. Е., i А. Н. Шабалин. "Моделирование коронального источника жесткого рентгеновского излучения в турбулентной плазме солнечных вспышек". Журнал технической физики 91, nr 8 (2021): 1204. http://dx.doi.org/10.21883/jtf.2021.08.51092.20-21.
Pełny tekst źródłaBabayev, Arif, Sukru Cakmaktepe i Deniz Turkoz. "The Energy Spectrum of Carriers between Two Concentric Spheres of Kane-Type Semiconductors". Journal of Nanomaterials 2006 (2006): 1–3. http://dx.doi.org/10.1155/jnm/2006/57519.
Pełny tekst źródłaSahakyan, N. "Investigation of the γ-ray spectrum of CTA 102 during the exceptional flaring state in 2016–2017". Astronomy & Astrophysics 635 (marzec 2020): A25. http://dx.doi.org/10.1051/0004-6361/201936715.
Pełny tekst źródłaMelrose, D. B. "The Nature of Flat Spectrum Sources". Symposium - International Astronomical Union 175 (1996): 423–26. http://dx.doi.org/10.1017/s0074180900081328.
Pełny tekst źródłaPurohit, S., M. K. Gupta, M. B. Chowdhuri, I. Mansuri, M. Bhandarkar, B. K. Shukla, K. Shah i in. "Initial results from time-resolved LaBr based hard x-ray spectrometer for ADITYA-U tokamak". Review of Scientific Instruments 93, nr 9 (1.09.2022): 093512. http://dx.doi.org/10.1063/5.0101310.
Pełny tekst źródłaKhangulyan, Dmitry, Andrew M. Taylor i Felix Aharonian. "The Formation of Hard Very High Energy Spectra from Gamma-ray Burst Afterglows via Two-zone Synchrotron Self-Compton Emission". Astrophysical Journal 947, nr 2 (1.04.2023): 87. http://dx.doi.org/10.3847/1538-4357/acc24e.
Pełny tekst źródłaFiocchi, M., F. Onori, A. Bazzano, A. J. Bird, A. Bodaghee, P. A. Charles, V. A. Lepingwell i in. "Evolution of MAXI J1631–479 during the January 2019 outburst observed by INTEGRAL/IBIS". Monthly Notices of the Royal Astronomical Society 492, nr 3 (11.01.2020): 3657–61. http://dx.doi.org/10.1093/mnras/staa068.
Pełny tekst źródłaWadiasingh, Zorawar, Matthew G. Baring, Peter L. Gonthier i Alice K. Harding. "Hard Spectral Tails in Magnetars". Proceedings of the International Astronomical Union 13, S337 (wrzesień 2017): 108–11. http://dx.doi.org/10.1017/s1743921317009073.
Pełny tekst źródłaTibaldo, L., R. Zanin, G. Faggioli, J. Ballet, M. H. Grondin, J. A. Hinton i M. Lemoine-Goumard. "Disentangling multiple high-energy emission components in the Vela X pulsar wind nebula with the Fermi Large Area Telescope". Astronomy & Astrophysics 617 (wrzesień 2018): A78. http://dx.doi.org/10.1051/0004-6361/201833356.
Pełny tekst źródłaRozprawy doktorskie na temat "Hard Electron Energy Spectrum"
Angadi, Veerendra C. "Quantitative electron energy-loss spectrum data processing for hyperspectral imaging in analytical transmission electron microscopy". Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20007/.
Pełny tekst źródłaTaraldsen, Gunnar. "Spectral theory of random operators : The energy spectrum of the quantum electron in a disordered solid". Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 1992. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-670.
Pełny tekst źródłaDI, FELICE VALERIA. "Low energy electron and positron measurements in space with the PAMELA experiment". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1245.
Pełny tekst źródłaThis thesis describes the study of electrons and positrons in the cosmic radiation. New measurements of the positron fraction at the top of the atmosphere between 200 MeV and 3.0 GeV are presented, together with the electron spectrum up to 20 GeV. The measurement was conducted with the space borne PAMELA experiment from July 2006 to December 2008, that is a period of minimum solar activity and negative solar magnetic field polarity. PAMELA provides the first long term observation of the low energy positron abundance during this particular solar and heliospheric state. The great amount of collected statistics allows to study the variation of the particle intensity at Earth with energy and time, and to investigate effects depending on the particles sign of charge. During approximately 860 days of data collection about 16300 positrons and 178000 electrons were identified. The major sources of background, constituted by cosmic protons and locally produced pions, have been studied. The derived electron spectrum clearly shows the effect of the solar modulation below few GeV. The detected positron fraction has been found to be in accordance with predictions from theoretical models that describe the transport of particles in the heliosphere taking drift effects into account.
Velte, Clemens [Verfasser], i Loredana [Akademischer Betreuer] Gastaldo. "Measurement of a high energy resolution and high statistics 163Ho electron capture spectrum for the ECHo experiment / Clemens Velte ; Betreuer: Loredana Gastaldo". Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/122101918X/34.
Pełny tekst źródłaMathumba, Penny. "Aluminium and gold functionalized graphene quantum dots as electron acceptors for inverted Schottky junction type rainbow solar cells". University of Western Cape, 2020. http://hdl.handle.net/11394/7232.
Pełny tekst źródłaThe main aim of this study was to prepare band gap-engineered graphene quantum dot (GQD) structures which match the different energies of the visible region in the solar spectrum. These band gap-engineered graphene quantum dot structures were used as donor materials in rainbow Schottky junction solar cells, targeting all the energies in the visible region of the solar spectrum for improved solar-to-electricity power conversion efficiency. Structural characterisation of the prepared nanomaterials under solid-state nuclear magnetic resonance spectroscopy (SS-NMR) showed appearance of bands at 40 ppm due to the presence of sp3 hybridised carbon atoms from the peripheral region of the GQD structures. Other bands were observed at 130 ppm due to the presence of polycyclic aromatic carbon atoms from the benzene rings of the GQD backbone, and around 180 ppm due to the presence of carboxylic acid carbons from oxidation due to moisture. Fourier-transform infrared resonance (FTIR) spectroscopy further confirmed the presence of aromatic carbon atoms and oxidised carbons due to the presence of C=O, C=C and -OH functional groups, concurrent with SS-NMR results.
2023-12-01
Lück, Thomas. "Determination of the CKM-matrix element |Vub| from the electron energy spectrum measured in inclusive B -> X u e[Ypsilon] decay with the BABAR detector". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16718.
Pełny tekst źródłaThis document presents a measurement of the CKM matrix-element Vub in inclusive semileptonic B to Xu e nu events on a dataset of 471 million BB events recorded by the BABAR detector. Inclusive B to Xu e nu decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B to Xu e nu decays. A B to Dstar e nu veto is applied to further suppress background. This veto uses Dstar mesons which have been reconstructed with a partial reconstruction technique.
Colson, Tobias A., i tobiascolson@gmail com. "Large Angle Plasmon Scattering in Metals and Ceramics". RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090212.143048.
Pełny tekst źródłaYedra, Cardona Lluís. "Towards a new dimension in analytical TEM: EELS, Tomography and the Spectrum Volume". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/145317.
Pełny tekst źródłaEn el microscopi electrònic de transmissió (TEM), es poden obtenir imatges d’una mostra des de diferents angles i posteriorment reconstruir aquestes imatges en tres dimensions (3D). Per altra banda, les interaccions dels electrons del feix amb els electrons de la mostra poden ser analitzades mitjançant l’espectroscòpia de pèrdues d’energia dels electrons (EELS), obtenint així informació química de la mostra. L’objectiu d’aquesta tesi és la combinació de l’espectroscòpia EELS amb la tomografia electrònica per obtenir informació química en 3 dimensions a la nanoescala. S’han explicat les bases de la tomografia electrònica i el procediment de la reconstrucció ha estat il•lustrat amb una mostra de nanocubs d’òxid de ferro. Posteriorment, s’ha aplicat a una sèrie de nanopartícules de Cu2O per tal de descriure’n la forma. També s’ha explicat la física en què es basa l’EELS, fent especial atenció als llindars d’altes pèrdues d’energia. A continuació, s’ha mostrat l’augment del senyal obtingut amb precessió electrònica al TEM quan la mostra es troba en condicions d’eix de zona. Seguint amb les aplicacions d’EELS, s’ha explotat la possibilitat de caracteritzar els estats d’oxidació dels metalls de transició mitjançant un programa propi, escrit per a Digital Micrograph i anomenat Oxide Wizard. Una vegada la tomografia electrònica i l’espectroscòpia de pèrdues d’energia dels electrons han estat explicades, s’ha procedit a reconstruir informació extreta d’EELS en 3D. S’han realitzat una sèrie d’experiments amb partícules mesoporoses que han demostrat la utilitat d’aplicar l’anàlisi multivariable per tal de reduir el soroll de les dades i extreure’n els components. Finalment, s’ha dissenyat un experiment en el qual ha estat possible recuperar l’espectre corresponent a cada unitat d’espai com la combinació d’espectres propis en una mostra preparada en forma de nanoagulla. Els espectres recuperats corresponen a la contribució de cada unitat de volum als espectres projectats. Aquest nou tipus de dades permet extreure espectres de l’interior d’una mostra. Finalment, doncs, s’ha pogut combinar amb èxit la tomografia electrònica i EELS per obtenir informació química en tres dimensions a la nanoescala.
Lück, Thomas [Verfasser], Heiko [Akademischer Betreuer] Lacker, Alexander [Akademischer Betreuer] Kappes i Jochen [Akademischer Betreuer] Dingfelder. "Determination of the CKM-matrix element |Vub| from the electron energy spectrum measured in inclusive B -> X u e[Ypsilon] decay with the BABAR detector / Thomas Lück. Gutachter: Heiko Lacker ; Alexander Kappes ; Jochen Dingfelder". Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://d-nb.info/1033837229/34.
Pełny tekst źródłaFeister, Scott. "Efficient Acceleration of Electrons by an Intense Laser and its Reflection". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461225902.
Pełny tekst źródłaKsiążki na temat "Hard Electron Energy Spectrum"
Tsidilkovski, Isaak M. Electron Spectrum of Gapless Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.
Znajdź pełny tekst źródłaT͡Sidilʹkovskiĭ, I. M. Electron spectrum of gapless semiconductors. Berlin: Springer, 1997.
Znajdź pełny tekst źródłaEgerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer Science+Business Media, LLC, 2011.
Znajdź pełny tekst źródłaTsidilkovski, Isaak M. Electron Spectrum of Gapless Semiconductors. Brand: Springer, 2011.
Znajdź pełny tekst źródłaBraun, Arthur, Jinghua Guo, Chongmin Wang, Niels de Jonge i Rafal E. Dunin-Borkowski. In-Situ and Operando Probing of Energy Materials at Multiscale down to Single Atomic Column - The Power of X-Rays, Neutrons and Electron Microscopy. University of Cambridge ESOL Examinations, 2014.
Znajdź pełny tekst źródłaInsitu And Operando Probing Of Energy Materials At Multiscale Down To Single Atomic Column The Power Of Xrays Neutrons And Electron Microscopy Symposium Held April 59 2010 San Francisco California. Cambridge University Press, 2010.
Znajdź pełny tekst źródłaGlazov, M. M. Electron Spin Relaxation Beyond the Hyperfine Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0008.
Pełny tekst źródłaGroot, Frank de, i Akio Kotani. Core Level Spectroscopy of Solids. Taylor & Francis Group, 2008.
Znajdź pełny tekst źródłaCore Level Spectroscopy of Solids (Advances in Condensed Matter Science). CRC, 2008.
Znajdź pełny tekst źródłaGroot, Frank de, i Akio Kotani. Core Level Spectroscopy of Solids. Taylor & Francis Group, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Hard Electron Energy Spectrum"
Yuan, J., N. Menon, G. A. J. Amaratunga, M. Chhowalla i C. J. Keily. "Interpretation of Electron Energy Loss Spectra from Hard Elastic Carbon and Related Materials". W Electron Microscopy and Analysis 1997, 159–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-41.
Pełny tekst źródłaWilliams, David B., i C. Barry Carter. "The Energy-Loss Spectrum". W Transmission Electron Microscopy, 653–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_38.
Pełny tekst źródłaEgerton, Ray F. "Quantitative Analysis of the Energy-Loss Spectrum". W Electron Energy-Loss Spectroscopy in the Electron Microscope, 229–89. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-6887-2_4.
Pełny tekst źródłaEgerton, R. F. "Quantitative Analysis of the Energy-Loss Spectrum". W Electron Energy-Loss Spectroscopy in the Electron Microscope, 245–99. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5099-7_4.
Pełny tekst źródłaCrance, Michèle. "Electron Energy Spectrum after Multiphoton Ionisation". W Atomic and Molecular Processes with Short Intense Laser Pulses, 219–25. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0967-3_27.
Pełny tekst źródłaKontar, E. P., J. C. Brown, A. G. Emslie, W. Hajdas, G. D. Holman, G. J. Hurford, J. Kašparová i in. "Deducing Electron Properties from Hard X-ray Observations". W High-Energy Aspects of Solar Flares, 301–55. New York, NY: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-3073-5_8.
Pełny tekst źródłaCiborowski, Jacek, i Jakub Rembieliński. "An Explanation of Anomalies in Electron Energy Spectrum from Tritium Decay". W International Europhysics Conference on High Energy Physics, 813–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59982-8_147.
Pełny tekst źródłaNakagawa, Yujin E., Teruaki Enoto, Kazuo Makishima, Atsumasa Yoshida, Kazutaka Yamaoka, Takanori Sakamoto, Nanda Rea i Kevin Hurley. "Suzaku Detection of Hard X-ray Emission in SGR 0501+4516 Short Burst Spectrum". W High-Energy Emission from Pulsars and their Systems, 323–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17251-9_25.
Pełny tekst źródłaDapor, Maurizio. "Appendix H: From the Electron Energy Loss Spectrum to the Dielectric Function". W Transport of Energetic Electrons in Solids, 179–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47492-2_17.
Pełny tekst źródłaBogolubov, N. N., A. V. Soldatov i S. P. Kruchinin. "On the Energy Spectrum of Two-Electron Quantum Dot in External Magnetic Field". W Nanotechnology in the Security Systems, 55–67. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9005-5_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Hard Electron Energy Spectrum"
Oparin, I. D., Yu E. Charikov, E. P. Ovchinnikova i A. N. Shabalin. "INFLUENCE OF THE ELECTRON-ELECTRON BREMSSTRAHLUNG ON SOLAR FLARE HARD X-RAY FLUX AND ENERGY SPECTRUM". W All-Russia Conference on Solar and Solar-Terrestrial Physics. The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 2019. http://dx.doi.org/10.31725/0552-5829-2019-313-316.
Pełny tekst źródłaAndreev, A. A., V. N. Novikov, K. Yu Platonov i J. C. Gauthier. "Hard X-ray Emission from Femtosecond Laser Interaction in Overdense Plasmas". W Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb3.
Pełny tekst źródłaYuan, Chen, i Jun Wu. "A Real-Time Hard X-Ray Tomographic System Designed for HL-2A Fast Electron Bremsstrahlung Radiation". W 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16259.
Pełny tekst źródłaNenner, Irène. "Synchrotron Radiation and Applications". W Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thd1.
Pełny tekst źródłaHébert, P., G. Baldacchino, T. Gustavsson, V. Kabelka, P. Baldeck i J. C. Mialocq. "Subpicosecond Study of the Dynamic Processes in Push-Pull Styrenes and the Role of Solvation". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.fc10.
Pełny tekst źródłaReiss, H. R. "Theory and Experiment for Photoelectron Spectra in Short-Pulse High-Intensity Ionization". W High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wc8.
Pełny tekst źródłaWeber, Marvin J., J. Wong, R. B. Greegor, F. W. Lytle i D. R. Sandstrom. "Optically detected x-ray absorption spectroscopy of luminescent materials". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mgg2.
Pełny tekst źródłaArlen, Timothy C., i Vladimir V. Vassiliev. "Hard spectrum TeV blazars and intergalactic magnetic fields". W HIGH ENERGY GAMMA-RAY ASTRONOMY: 5th International Meeting on High Energy Gamma-Ray Astronomy. AIP, 2012. http://dx.doi.org/10.1063/1.4772333.
Pełny tekst źródłaLin, R. P., i C. M. Johns-Krull. "Inferring the accelerated electron spectrum in solar flares". W High energy solar physics. AIP, 1996. http://dx.doi.org/10.1063/1.50967.
Pełny tekst źródłaPacini, Lorenzo. "The cosmic-ray electron spectrum measured with the CALorimetric Electron Telescope". W The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0489.
Pełny tekst źródłaRaporty organizacyjne na temat "Hard Electron Energy Spectrum"
Wang, L. Energy Spectrum of an Electron Cloud with Short Bunch. Office of Scientific and Technical Information (OSTI), wrzesień 2004. http://dx.doi.org/10.2172/833087.
Pełny tekst źródłaUlmen, Benjamin, Timothy Webb, Andrew McCourt i Sean Coffey. Measuring Saturn's Electron Beam Energy Spectrum using Webb's Wedges. Office of Scientific and Technical Information (OSTI), październik 2021. http://dx.doi.org/10.2172/1866153.
Pełny tekst źródłaBrandt, T. Measurement of the Electron Energy Spectrum and its Moments in Inclusive B --> X e nu Decays. Office of Scientific and Technical Information (OSTI), kwiecień 2004. http://dx.doi.org/10.2172/826846.
Pełny tekst źródłaGrasso, D., S. Profumo, A. W. Strong, L. Baldini, R. Bellazzini, E. D. Bloom, J. Bregeon i in. On Possible Interpretations of the High Energy Electron-Positron Spectrum Measured by the Fermi Large Area Telescope. Office of Scientific and Technical Information (OSTI), maj 2009. http://dx.doi.org/10.2172/952979.
Pełny tekst źródłaIvaldi, Gilles. The impact of the Russia-Ukraine War on radical right-wing populism in France. European Center for Populism Studies (ECPS), marzec 2023. http://dx.doi.org/10.55271/rp0019.
Pełny tekst źródłaThompson, Kathleen A. Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the Deep Quantum Regime. Office of Scientific and Technical Information (OSTI), październik 1998. http://dx.doi.org/10.2172/9899.
Pełny tekst źródłaMelnikov, Kirill. Alpha{sup 2} in (m{sub mu}{sup 2}/m{sub e}{sup 2}) Corrections to Electron Energy Spectrum in Muon. Office of Scientific and Technical Information (OSTI), sierpień 2002. http://dx.doi.org/10.2172/799930.
Pełny tekst źródła