Gotowa bibliografia na temat „Habitat predictive model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Habitat predictive model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Habitat predictive model"
Reisinger, Ryan R., Ari S. Friedlaender, Alexandre N. Zerbini, Daniel M. Palacios, Virginia Andrews-Goff, Luciano Dalla Rosa, Mike Double i in. "Combining Regional Habitat Selection Models for Large-Scale Prediction: Circumpolar Habitat Selection of Southern Ocean Humpback Whales". Remote Sensing 13, nr 11 (25.05.2021): 2074. http://dx.doi.org/10.3390/rs13112074.
Pełny tekst źródłaMeißner, Karin, i Alexander Darr. "Distribution of Magelona species (Polychaeta: Magelonidae) in the German Bight (North Sea): a modeling approach". Zoosymposia 2, nr 1 (31.08.2009): 567–86. http://dx.doi.org/10.11646/zoosymposia.2.1.39.
Pełny tekst źródłaEnwright, Nicholas M., Lei Wang, Hongqing Wang, Michael J. Osland, Laura C. Feher, Sinéad M. Borchert i Richard H. Day. "Modeling Barrier Island Habitats Using Landscape Position Information". Remote Sensing 11, nr 8 (24.04.2019): 976. http://dx.doi.org/10.3390/rs11080976.
Pełny tekst źródłaRice, M. B., A. D. Apa i L. A. Wiechman. "The importance of seasonal resource selection when managing a threatened species: targeting conservation actions within critical habitat designations for the Gunnison sage-grouse". Wildlife Research 44, nr 5 (2017): 407. http://dx.doi.org/10.1071/wr17027.
Pełny tekst źródłaHaxton, Tim J., C. Scott Findlay i R. W. Threader. "Predictive Value of a Lake Sturgeon Habitat Suitability Model". North American Journal of Fisheries Management 28, nr 5 (październik 2008): 1373–83. http://dx.doi.org/10.1577/m07-146.1.
Pełny tekst źródłaStreet, Garrett M., Lucas M. Vander Vennen, Tal Avgar, Anna Mosser, Morgan L. Anderson, Arthur R. Rodgers i John M. Fryxell. "Habitat selection following recent disturbance: model transferability with implications for management and conservation of moose (Alces alces)". Canadian Journal of Zoology 93, nr 11 (listopad 2015): 813–21. http://dx.doi.org/10.1139/cjz-2015-0005.
Pełny tekst źródłaTAKEMURA, Shion, Yoshihisa AKAMATSU i Mahito KAMADA. "Evaluation of vulnerability of mangrove habitats using predictive habitat distribution model in Palau Islands". Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research) 68, nr 5 (2012): I_105—I_110. http://dx.doi.org/10.2208/jscejer.68.i_105.
Pełny tekst źródłaBuechling, Arne, i Claudine Tobalske. "Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests". Western Journal of Applied Forestry 26, nr 2 (1.04.2011): 71–81. http://dx.doi.org/10.1093/wjaf/26.2.71.
Pełny tekst źródłaAlabia, Irene D., Sei-Ichi Saitoh, Hiromichi Igarashi, Yoichi Ishikawa, Norihisa Usui, Masafumi Kamachi, Toshiyuki Awaji i Masaki Seito. "Ensemble squid habitat model using three-dimensional ocean data". ICES Journal of Marine Science 73, nr 7 (6.05.2016): 1863–74. http://dx.doi.org/10.1093/icesjms/fsw075.
Pełny tekst źródłaSocolar, Jacob B., i David S. Wilcove. "Forest-type specialization strongly predicts avian responses to tropical agriculture". Proceedings of the Royal Society B: Biological Sciences 286, nr 1913 (23.10.2019): 20191724. http://dx.doi.org/10.1098/rspb.2019.1724.
Pełny tekst źródłaRozprawy doktorskie na temat "Habitat predictive model"
Machemer, Ethan G. P. "A Predictive Habitat Model for Rainbow Parrotfish Scarus guacamaia". NSUWorks, 2010. http://nsuworks.nova.edu/occ_stuetd/212.
Pełny tekst źródłaAlizadeh, Shabani Afshin, i afshin alizadeh@rmit edu au. "Identifying bird species as biodiversity indicators for terrestrial ecosystem management". RMIT University. Mathematical and Geospatial Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20061116.161912.
Pełny tekst źródłaEmbling, Clare B. "Predictive models of cetacean distributions off the west coast of Scotland". Thesis, University of St Andrews, 2008. http://hdl.handle.net/10023/640.
Pełny tekst źródłaMorris, Charisa Maria. "Building a Predictive Model of Delmarva Fox Squirrel (Sciurus niger cinereus) Occurrence Using Infrared Photomonitors". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/35356.
Pełny tekst źródłaMaster of Science
Amey, Katherine Springer. "Hydrology And Predictive Model Of Headwater Streams And The Groundwater/Surface Water Interactions Supporting Brook Trout Habitat In Northeast Ohio". Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1301618586.
Pełny tekst źródłaGonzález-Andrés, Cristina. "The role of marine offshore protected areas in protecting large pelagics. Practical case: Cocos Island National Park (Costa Rica)". Doctoral thesis, Universidad de Alicante, 2020. http://hdl.handle.net/10045/115291.
Pełny tekst źródłaWickert, Claudia. "Breeding white storks in former East Prussia : comparing predicted relative occurrences across scales and time using a stochastic gradient boosting method (TreeNet), GIS and public data". Master's thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1353/.
Pełny tekst źródłaDifferent habitat models were created for the White Stork (Ciconia ciconia) in the region of the former German province of East Prussia (equals app. the current Russian oblast Kaliningrad and the Polish voivodship Warmia-Masuria). Different historical data sets describing the occurrence of the White Stork in the 1930s, as well as selected variables for the description of landscape and habitat, were employed. The processing and modeling of the applied data sets was done with a geographical information system (ArcGIS) and a statistical modeling approach that comes from the disciplines of machine-learning and data mining (TreeNet by Salford Systems Ltd.). Applying historical habitat descriptors, as well as data on the occurrence of the White Stork, models on two different scales were created: (i) a point scale model applying a raster with a cell size of 1 km2 and (ii) an administrative district scale model based on the organization of the former province of East Prussia. The evaluation of the created models show that the occurrence of White Stork nesting grounds in the former East Prussia for most parts is defined by the variables ‘forest’, ‘settlement area’, ‘pasture land’ and ‘proximity to coastline’. From this set of variables it can be assumed that a good food supply and nesting opportunities are provided to the White Stork in pasture and meadows as well as in the proximity to human settlements. These could be seen as crucial factors for the choice of nesting White Stork in East Prussia. Dense forest areas appear to be unsuited as nesting grounds of White Storks. The high influence of the variable ‘coastline’ is most likely explained by the specific landscape composition of East Prussia parallel to the coastline and is to be seen as a proximal factor for explaining the distribution of breeding White Storks. In a second step, predictions for the period of 1981 to 1993 could be made applying both scales of the models created in this study. In doing so, a decline of potential nesting habitat was predicted on the point scale. In contrast, the predicted White Stork occurrence increases when applying the model of the administrative district scale. The difference between both predictions is to be seen in the application of different scales (density versus suitability as breeding ground) and partly dissimilar explanatory variables. More studies are needed to investigate this phenomenon. The model predictions for the period 1981 to 1993 could be compared to the available inventories of that period. It shows that the figures predicted here were higher than the figures established by the census. This means that the models created here show rather a capacity of the habitat (potential niche). Other factors affecting the population size e.g. breeding success or mortality have to be investigated further. A feasible approach on how to generate possible habitat models was shown employing the methods presented here and applying historical data as well as assessing the effects of changes in land use on the White Stork. The models present the first of their kind, and could be improved by means of further data regarding the structure of the habitat and more exact spatially explicit information on the location of the nesting sites of the White Stork. In a further step, a habitat model of the present times should be created. This would allow for a more precise comparison regarding the findings from the changes of land use and relevant conditions of the environment on the White Stork in the region of former East Prussia, e.g. in the light of coming landscape changes brought by the European Union (EU).
Cross, Cheryl L. "Predictive Habitat Models for Four Cetaceans in the Mid-Atlantic Bight". NSUWorks, 2010. http://nsuworks.nova.edu/occ_stuetd/221.
Pełny tekst źródłaWright, Amanda. "Predicting the distribution of Eurasian badger (Meles meles) setts". Thesis, Manchester Metropolitan University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364059.
Pełny tekst źródłaKrause, Colin William. "Evaluation and Use of Stream Temperature Prediction Models for Instream Flow and Fish Habitat Management". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/31229.
Pełny tekst źródłaMaster of Science
Książki na temat "Habitat predictive model"
Canada. Natural Resources Canada. Canadian Forest Service. Great Lakes Forestry Centre. Predicting canopy closure for habitat modeling. Ottawa: Natural Resources Canada., 1995.
Znajdź pełny tekst źródłaDrew, C. Ashton. Predictive species and habitat modeling in landscape ecology: Concepts and applications. New York: Springer, 2011.
Znajdź pełny tekst źródłaContor, Craig R. Assessment of COWFISH for predicting trout populations in grazed watersheds of the Intermountain West. Ogden, Utah: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1991.
Znajdź pełny tekst źródłaZorn, Troy G. Utility of species-specific, multiple linear regression models for prediction of fish assemblages in rivers of Michigan's lower peninsula. Lansing, MI: Michigan Dept. of Natural Resources, Fisheries Division, 2004.
Znajdź pełny tekst źródłaEvaluation of the Predictive Ecological Model for the Edwards Aquifer Habitat Conservation Plan. Washington, D.C.: National Academies Press, 2016. http://dx.doi.org/10.17226/23557.
Pełny tekst źródłaLtd, Dendron Resource Surveys, Great Lakes Forestry Centre, Canada-Ontario Subsidiary Agreement on Northern Ontario Development. i Northern Forestry Program (Canada), red. Predicting canopy closure for habitat modeling. Sault Ste. Marie, Ont: Great Lakes Forestry Centre, 1995.
Znajdź pełny tekst źródłaInc, Dendron Resource Surveys, i Great Lakes Forest Research Centre., red. Predicting canopy closure for habitat modeling. Sault Ste. Marie, Ont: Great Lakes Forestry Centre, 1995.
Znajdź pełny tekst źródłaRailsback, Steven F., i Bret C. Harvey. Modeling Populations of Adaptive Individuals. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691195285.001.0001.
Pełny tekst źródłaJappelli, Tullio, i Luigi Pistaferri. The Response of Consumption to Anticipated Changes in Income. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199383146.003.0008.
Pełny tekst źródła1945-, Silander John August, Civco Daniel L i United States. National Aeronautics and Space Administration., red. Landscape dynamics of northeastern forests: First year annual report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Habitat predictive model"
Huettmann, Falk, i Thomas Gottschalk. "Simplicity, Model Fit, Complexity and Uncertainty in Spatial Prediction Models Applied Over Time: We Are Quite Sure, Aren’t We?" W Predictive Species and Habitat Modeling in Landscape Ecology, 189–208. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7390-0_10.
Pełny tekst źródłaDrew, C. Ashton, i Ajith H. Perera. "Expert Knowledge as a Basis for Landscape Ecological Predictive Models". W Predictive Species and Habitat Modeling in Landscape Ecology, 229–48. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7390-0_12.
Pełny tekst źródłaLawler, Josh J., Yolanda F. Wiersma i Falk Huettmann. "Using Species Distribution Models for Conservation Planning and Ecological Forecasting". W Predictive Species and Habitat Modeling in Landscape Ecology, 271–90. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7390-0_14.
Pełny tekst źródłaWiersma, Yolanda F. "Variation, Use, and Misuse of Statistical Models: A Review of the Effects on the Interpretation of Research Results". W Predictive Species and Habitat Modeling in Landscape Ecology, 209–27. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7390-0_11.
Pełny tekst źródłaVeech, Joseph A. "Post-analysis Procedures". W Habitat Ecology and Analysis, 175–92. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198829287.003.0010.
Pełny tekst źródła"Fish Habitat: Essential Fish Habitat and Rehabilitation". W Fish Habitat: Essential Fish Habitat and Rehabilitation, redaktor Peter J. Auster. American Fisheries Society, 1999. http://dx.doi.org/10.47886/9781888569124.ch13.
Pełny tekst źródła"Fish Habitat: Essential Fish Habitat and Rehabilitation". W Fish Habitat: Essential Fish Habitat and Rehabilitation, redaktor Peter J. Auster. American Fisheries Society, 1999. http://dx.doi.org/10.47886/9781888569124.ch13.
Pełny tekst źródła"Landscape Influences on Stream Habitats and Biological Assemblages". W Landscape Influences on Stream Habitats and Biological Assemblages, redaktorzy James E. McKenna, Richard P. McDonald, Chris Castiglione, Sandy S. Morrison, Kurt P. Kowalski i Dora R. Passino-Reader. American Fisheries Society, 2006. http://dx.doi.org/10.47886/9781888569766.ch26.
Pełny tekst źródła"Landscape Influences on Stream Habitats and Biological Assemblages". W Landscape Influences on Stream Habitats and Biological Assemblages, redaktorzy Les W. Stanfield, Scott F. Gibson i Jason A. Borwick. American Fisheries Society, 2006. http://dx.doi.org/10.47886/9781888569766.ch29.
Pełny tekst źródła"Landscape Influences on Stream Habitats and Biological Assemblages". W Landscape Influences on Stream Habitats and Biological Assemblages, redaktorzy Keith B. Gido, Jeffrey A. Falke, Robert M. Oakes i Kristen J. Hase. American Fisheries Society, 2006. http://dx.doi.org/10.47886/9781888569766.ch12.
Pełny tekst źródłaStreszczenia konferencji na temat "Habitat predictive model"
Chen, Di, Yexiang Xue, Daniel Fink, Shuo Chen i Carla P. Gomes. "Deep Multi-species Embedding". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/509.
Pełny tekst źródłaAhsan, Nasir, Stefan B. Williams, Michael Jakuba, Oscar Pizarro i Ben Radford. "Predictive habitat models from AUV-based multibeam and optical imagery". W 2010 OCEANS MTS/IEEE SEATTLE. IEEE, 2010. http://dx.doi.org/10.1109/oceans.2010.5663809.
Pełny tekst źródłaKUMADA, Takayuki, Takaaki UDA i Masumi SERIZAWA. "MODEL FOR PREDICTING THE EXTENSION OF HABITAT OF JAPANESE HARD CLAM MERETRIX LAMARCKII". W Proceedings of the 31st International Conference. World Scientific Publishing Company, 2009. http://dx.doi.org/10.1142/9789814277426_0378.
Pełny tekst źródłaGarg, Priya, i Deepti Aggarwal. "Application of Swarm-Based Feature Selection and Extreme Learning Machines in Lung Cancer Risk Prediction". W Intelligent Computing and Technologies Conference. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.115.1.
Pełny tekst źródłaUenaka, Takashi, Naohisa Sakamoto i Koji Koyamada. "Visual Analysis of Habitat Suitability Index Model for Predicting the Locations of Fishing Grounds". W 2014 IEEE Pacific Visualization Symposium (PacificVis). IEEE, 2014. http://dx.doi.org/10.1109/pacificvis.2014.33.
Pełny tekst źródłaPiacenza, Joseph, Salvador Mayoral, Bahaa Albarhami i Sean Lin. "Understanding the Importance of Post Occupancy Usage Trends During Concept-Stage Sustainable Building Design". W ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67461.
Pełny tekst źródłaLong, Keyu, i Zaiyue Yang. "Model predictive control for household energy management based on individual habit". W 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561587.
Pełny tekst źródłaWang, Tianyi, Xiaohan Mei, J. Alex Thomasson, Xiongzhe Han i Pappu Kumar Yadav. "<i>Volunteer Cotton Habitat Prediction Model and Detection with UAV Remote Sensing</i>". W 2020 ASABE Annual International Virtual Meeting, July 13-15, 2020. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2020. http://dx.doi.org/10.13031/aim.202000219.
Pełny tekst źródłaLazar, Alina, Alexandra Ballow, Ling Jin, C. Anna Spurlock, Alexander Sim i Kesheng Wu. "Machine Learning for Prediction of Mid to Long Term Habitual Transportation Mode Use". W 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006411.
Pełny tekst źródłaJeon, Soonil, Jang-Moo Lee i Yeong-Il Park. "Advanced Multi-Mode Control Strategy for a Parallel Hybrid Electric Vehicle Based on Driving Pattern Recognition". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41857.
Pełny tekst źródła