Artykuły w czasopismach na temat „Guided elastic waves”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Guided elastic waves.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Guided elastic waves”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Fairuschin, Viktor, Felix Brand, Alexander Backer i Klaus Stefan Drese. "Elastic Properties Measurement Using Guided Acoustic Waves". Sensors 21, nr 19 (8.10.2021): 6675. http://dx.doi.org/10.3390/s21196675.

Pełny tekst źródła
Streszczenie:
Nondestructive evaluation of elastic properties plays a critical role in condition monitoring of thin structures such as sheets, plates or tubes. Recent research has shown that elastic properties of such structures can be determined with remarkable accuracy by utilizing the dispersive nature of guided acoustic waves propagating in them. However, existing techniques largely require complicated and expensive equipment or involve accurate measurement of an additional quantity, rendering them impractical for industrial use. In this work, we present a new approach that requires only a pair of piezoelectric transducers used to measure the group velocities ratio of fundamental guided wave modes. A numerical model based on the spectral collocation method is used to fit the measured data by solving a bound-constrained nonlinear least squares optimization problem. We verify our approach on both simulated and experimental data and achieve accuracies similar to those reported by other authors. The high accuracy and simple measurement setup of our approach makes it eminently suitable for use in industrial environments.
Style APA, Harvard, Vancouver, ISO itp.
2

Camou, S., Th Pastureaud, H. P. D. Schenk, S. Ballandras i V. Laude. "Guided elastic waves in GaN-on-sapphire". Electronics Letters 37, nr 16 (2001): 1053. http://dx.doi.org/10.1049/el:20010668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dieulesaint, Eugène, i Daniel Royer. "Liquid level detector by guided elastic waves". Journal of the Acoustical Society of America 85, nr 3 (marzec 1989): 1390. http://dx.doi.org/10.1121/1.397395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sotiropoulos, D. A., i G. Tougelidis. "Guided elastic waves in orthotropic surface layers". Ultrasonics 36, nr 1-5 (luty 1998): 371–74. http://dx.doi.org/10.1016/s0041-624x(97)00092-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Skelton, Elizabeth A., Samuel D. M. Adams i Richard V. Craster. "Guided elastic waves and perfectly matched layers". Wave Motion 44, nr 7-8 (sierpień 2007): 573–92. http://dx.doi.org/10.1016/j.wavemoti.2007.03.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gei, Massimiliano. "Elastic waves guided by a material interface". European Journal of Mechanics - A/Solids 27, nr 3 (maj 2008): 328–45. http://dx.doi.org/10.1016/j.euromechsol.2007.10.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhou, Fang Jun, Yue Min Wang, Chuan Jun Shen, Feng Rui Sun i Hong Tao Zhang. "Application of Ultrasonic Guided Waves Testing Method in Coiled Springs". Applied Mechanics and Materials 127 (październik 2011): 449–54. http://dx.doi.org/10.4028/www.scientific.net/amm.127.449.

Pełny tekst źródła
Streszczenie:
In this paper,application of defect detection by ultrasonic guided waves in springs has been studied in three aspects,which are theoretical calculation, simulation modeling and experiments.For the springs structure is helix and it can not be directly described easily,less work has been done on theoretical calculation of elastic wave propagation in the springs.The elastic wave equation of the spiral structure is established and calculated numerically here,considering the theoretical calculation helps to quantitative analyze the law of elastic wave propagation in the springs.Then guided waves dispersion relations corresponding is achieved.The experimental results of spring field testing agree well with the theoretical calculations and simulations,indicating the effectiveness of ultrasonic guided waves inspection in springs.
Style APA, Harvard, Vancouver, ISO itp.
8

Fan, Zheng, i Mike J. S. Lowe. "Elastic waves guided by a welded joint in a plate". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, nr 2107 (15.04.2009): 2053–68. http://dx.doi.org/10.1098/rspa.2009.0010.

Pełny tekst źródła
Streszczenie:
The inspection of large areas of complex structures is a growing interest for industry. An experimental observation on a large welded plate found that the weld can concentrate and guide the energy of a guided wave travelling along the direction of the weld. This is attractive for non-destructive evaluation (NDE) since it offers the potential to quickly inspect for defects such as cracking or corrosion along long lengths of welds. In this paper, a two-dimensional semi-analytical finite-element (SAFE) method is applied to provide a modal study of the elastic waves that are guided by the welded joint in a plate. This brings understanding to the compression wave that was previously observed in the experiment. However, during the study, a shear weld-guided mode, which is non-leaky and almost non-dispersive, has also been discovered. Its characteristics are particularly attractive for NDE, so this is a significant new finding. The properties for both the compression and the shear mode are discussed and compared, and the physical reason for the energy trapping phenomena is then explained. Experiments have been undertaken to validate the existence of the shear weld-guided mode and the accuracy of the FE model, showing very good results.
Style APA, Harvard, Vancouver, ISO itp.
9

Frehner, Marcel, i Stefan M. Schmalholz. "Finite-element simulations of Stoneley guided-wave reflection and scattering at the tips of fluid-filled fractures". GEOPHYSICS 75, nr 2 (marzec 2010): T23—T36. http://dx.doi.org/10.1190/1.3340361.

Pełny tekst źródła
Streszczenie:
The reflection and scattering of Stoneley guided waves at the tip of a crack filled with a viscous fluid was studied numerically in two dimensions using the finite-element method. The rock surrounding the crack is fully elastic and the fluid filling the crack is elastic in its bulk deformation behavior and viscous in its shear deformation behavior. The crack geometry, especially the crack tip, is resolved in detail by the unstructured finite-element mesh. At the tip of the crack, the Stoneley guided wave is reflected. The amplitude ratio between reflected and incident Stoneley guided wave is calculated from numerical simulations, which provide values ranging between 43% and close to 100% depending on the type of fluid filling the crack (water, oil or hydrocarbon gas), the crack geometry (elliptical or rectangular), and the presence of asmall gas cap at the cracktip. The interference of incident and reflected Stoneley guided waves leads to a node (zero amplitude) at the tip of the crack. At other positions along the crack, this interference increases the amplitude. However, the exponential decay away from the crack makes the Stoneley guided wave difficult to detect at a relatively short distance away from the crack. The part of the Stoneley guided wave that is not reflected is scattered at the crack tip and emitted into the surrounding elastic rock as body waves. For fully saturated cracks, the radiation pattern of these elastic body waves points in every direction from the crack tip. The emitted elastic body waves can allow the detection of Stoneley guided wave-related resonant signals at distances away from the crack where the amplitude of the Stoneley guided wave itself is too small to be detected.
Style APA, Harvard, Vancouver, ISO itp.
10

Lobkis, O. I., i D. E. Chimenti. "Elastic guided waves in plates with rough surfaces". Applied Physics Letters 69, nr 23 (2.12.1996): 3486–88. http://dx.doi.org/10.1063/1.117260.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Yan, Xiang, Rui Zhu, Guoliang Huang i Fuh-Gwo Yuan. "Focusing guided waves using surface bonded elastic metamaterials". Applied Physics Letters 103, nr 12 (16.09.2013): 121901. http://dx.doi.org/10.1063/1.4821258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Qiao, Song, Xinchun Shang i Ernian Pan. "Elastic guided waves in a coated spherical shell". Nondestructive Testing and Evaluation 31, nr 2 (15.09.2015): 165–90. http://dx.doi.org/10.1080/10589759.2015.1079631.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Cho, Youn Ho, Won Deok Oh i Joon Hyun Lee. "Long-Range Pipe Monitoring with Elastic Guided Waves". Key Engineering Materials 297-300 (listopad 2005): 2176–81. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.2176.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Treyssède, F., L. Laguerre, P. Cartraud i T. Soulard. "Elastic guided waves in helical multi-wire armors". Ultrasonics 110 (luty 2021): 106294. http://dx.doi.org/10.1016/j.ultras.2020.106294.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Joly, Patrick, i Jamel Tlili. "Elastic waves guided by an infinite plane crack". Wave Motion 14, nr 1 (sierpień 1991): 25–53. http://dx.doi.org/10.1016/0165-2125(91)90047-r.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

DHIA, A. S. BONNET-BEN, J. DUTERTE i P. JOLY. "MATHEMATICAL ANALYSIS OF ELASTIC SURFACE WAVES IN TOPOGRAPHIC WAVEGUIDES". Mathematical Models and Methods in Applied Sciences 09, nr 05 (lipiec 1999): 755–98. http://dx.doi.org/10.1142/s0218202599000373.

Pełny tekst źródła
Streszczenie:
We present here a theoretical study of the guided waves in an isotropic homogeneous elastic half-space whose free surface has been deformed. The deformation is supposed to be invariant in the propagation direction and localized in the transverse ones. We show that finding guided waves amounts to solving a family of 2-D eigenvalue problems set in the cross-section of the propagation medium. Then using the min-max principle for non-compact self-adjoint operators, we prove the existence of guided waves for some particular geometries of the free surface. These waves have a smaller speed than that of the Rayleigh wave in the perfect half-space and a finite transverse energy. Moreover, we prove that the existence results are valid for arbitrary high frequencies in the presence of singularities of the free boundary. Finally, we prove that no guided mode can exist at low frequency, except maybe the fundamental one.
Style APA, Harvard, Vancouver, ISO itp.
17

Adams, Samuel D. M., Richard V. Craster i Duncan P. Williams. "Rayleigh waves guided by topography". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, nr 2078 (17.10.2006): 531–50. http://dx.doi.org/10.1098/rspa.2006.1779.

Pełny tekst źródła
Streszczenie:
We consider wave propagation along the surface of an elastic half-space, whose surface is flat except for a straight, infinite length, ridge or trench that does not vary in its cross-section. We seek to resolve the issue of whether such a perturbed surface can support a trapped wave, whose energy is localized to within some vicinity of the defect, and explain physically how this trapping occurs. First, the trapping is addressed by developing an asymptotic scheme, which exploits a small parameter associated with the surface variation, to perturb about the base state of a flat half-space (which supports a surface wave, as demonstrated by Lord Rayleigh in 1885). We then provide convincing numerical evidence to support the results obtained from the asymptotic scheme; however, no rigorous proof of existence is presented.
Style APA, Harvard, Vancouver, ISO itp.
18

Bös, Christoph, i Chuanzeng Zhang. "Mutual interactions between bulk waves and guided waves in a quadratic nonlinear elastic medium". Journal of the Acoustical Society of America 154, nr 4_supplement (1.10.2023): A263. http://dx.doi.org/10.1121/10.0023473.

Pełny tekst źródła
Streszczenie:
The high sensitivity of nonlinear ultrasonic waves to the early stages of local material deteriorations makes them ideal candidates for nondestructive material characterization. Guided elastic waves, which can be emitted and received on the same surface, expand the possibilities to inspect inaccessible domains to test and monitor existing structures. The pure measurement of the amplitude of the second harmonic has only limited significance, since it is difficult to distinguish between the rather weak material nonlinearity and the nonlinearities from the technical equipment. This can be avoided by mixing two ultrasonic waves of different frequencies, which results in superposed harmonics at these frequencies. In this study, the mutual interactions between bulk waves and guided waves in a quadratic nonlinear elastic medium are investigated by highly efficient computations. In addition, numerical examples for the wave interaction in a finite area with nonlinearity in an otherwise linearly elastic host medium are presented and discussed to explore the effects of individual parameters as well as possible experimental implementation.
Style APA, Harvard, Vancouver, ISO itp.
19

Rokhlin, S. I. "Application of elastic guided waves for interface properties characterization". Journal of the Acoustical Society of America 77, S1 (kwiecień 1985): S4. http://dx.doi.org/10.1121/1.2022373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Teidj, Sara. "Mathematical modeling on the propagation of guided elastic waves". International Review of Applied Sciences and Engineering 11, nr 2 (sierpień 2020): 135–39. http://dx.doi.org/10.1556/1848.2020.20017.

Pełny tekst źródła
Streszczenie:
AbstractThe main cause of train derailment is related to transverse defects that arise in the railhead. These consist typically of opened or internal flaws that develop generally in a plane that is orthogonal to the rail direction. Most of the actual inspection techniques of rails relay on eddy currents, electromagnetic induction, and ultrasounds. Ultrasounds based testing is performed according to the excitation-echo procedure [1]. It is conducted conventionally by using a contact excitation probe that rolls on the railhead or by a contact-less system using a laser as excitation and air-coupled acoustic sensors for wave reception. The ratio of false predictions either positive or negative is yet too high due to the low accuracy of the actual devices. The inspection rate is also late; new numerical method has been developed in this context: The semi-analytical finite element method SAFE. This method has been applied in the case of anisotropic media [2], composite plates [3] and media in contact with fluids [4]. This method has been used successfully for several structures and especially in the case of beams of any cross-section such as rails that are the subject of this work and we were interested in wave propagation in waveguides of any arbitrary cross-section in the case of beams or rails.
Style APA, Harvard, Vancouver, ISO itp.
21

Ma, Pyung Sik, Hyung Jin Lee i Yoon Young Kim. "Dispersion suppression of guided elastic waves by anisotropic metamaterial". Journal of the Acoustical Society of America 138, nr 1 (lipiec 2015): EL77—EL82. http://dx.doi.org/10.1121/1.4922766.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Adams, Samuel D. M., Richard V. Craster i Sebastien Guenneau. "Guided and standing Bloch waves in periodic elastic strips". Waves in Random and Complex Media 19, nr 2 (8.06.2009): 321–46. http://dx.doi.org/10.1080/17455030802541566.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Charles, C., B. Bonello i F. Ganot. "Propagation of guided elastic waves in 2D phononic crystals". Ultrasonics 44 (grudzień 2006): e1209-e1213. http://dx.doi.org/10.1016/j.ultras.2006.05.096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Gao, Min, i Zhifei Shi. "A wave guided barrier to isolate antiplane elastic waves". Journal of Sound and Vibration 443 (marzec 2019): 155–66. http://dx.doi.org/10.1016/j.jsv.2018.11.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Sotiropoulos, D. A. "Guided elastic waves in a pre-stressed compressible interlayer". Ultrasonics 38, nr 1-8 (marzec 2000): 821–23. http://dx.doi.org/10.1016/s0041-624x(99)00221-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Tang, Liguo, i Shengxing Liu. "Guided elastic waves in infinite free-clamped hollow cylinders". Progress in Natural Science 19, nr 3 (marzec 2009): 313–20. http://dx.doi.org/10.1016/j.pnsc.2008.06.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Adamou, A. T. I., i R. V. Craster. "Spectral methods for modelling guided waves in elastic media". Journal of the Acoustical Society of America 116, nr 3 (wrzesień 2004): 1524–35. http://dx.doi.org/10.1121/1.1777871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Joly, Patrick, i Ricardo Weder. "New results for guided waves in heterogeneous elastic media". Mathematical Methods in the Applied Sciences 15, nr 6 (sierpień 1992): 395–409. http://dx.doi.org/10.1002/mma.1670150603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Samsonov, Alexander M., Irina V. Semenova i Fedor E. Garbuzov. "Nonlinear guided bulk waves in heterogeneous elastic structural elements". International Journal of Non-Linear Mechanics 94 (wrzesień 2017): 343–50. http://dx.doi.org/10.1016/j.ijnonlinmec.2017.01.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Fu, Y. B., G. A. Rogerson i W. F. Wang. "Surface waves guided by topography in an anisotropic elastic half-space". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, nr 2149 (8.01.2013): 20120371. http://dx.doi.org/10.1098/rspa.2012.0371.

Pełny tekst źródła
Streszczenie:
We consider the propagation of free surface waves on an elastic half-space that has a localized geometric inhomogeneity perpendicular to the direction of wave propagation (such waves are known as topography-guided surface waves). Our aim is to investigate how such a weak inhomogeneity modifies the surface-wave speed slightly. We first recover previously known results for isotropic materials and then present additional results for a generally anisotropic elastic half-space assuming only one plane of material symmetry. It is shown that a topography-guided surface wave in the present context may or may not propagate depending on a number of factors. In particular, they cannot propagate if the original two-dimensional surface wave on a flat half-space is supersonic with respect to the speed of anti-plane shear waves. For the case when a topography-guided surface wave may exist, the existence and computation of wave speed correction is reduced to the solution of a simple eigenvalue problem whose properties are previously well understood. As a by-product of our analysis, we deduce that there exists at least one topography-guided surface wave on an isotropic elastic half-space, and that it is unique when the geometric inhomogeneity has sufficiently small amplitude.
Style APA, Harvard, Vancouver, ISO itp.
31

Hu, Liang-Zie, George A. McMechan i Jerry M. Harris. "Elastic finite-difference modeling of cross-hole seismic data". Bulletin of the Seismological Society of America 78, nr 5 (1.10.1988): 1796–806. http://dx.doi.org/10.1785/bssa0780051796.

Pełny tekst źródła
Streszczenie:
Abstract Cross-hole seismic data exhibit unique characteristics not seen in surface survey data or even in vertical seismic profile data. These are, to a large extent, due to the near-horizontal propagation involved. Transmitted, reflected, evanescent, guided, and converted waves are all prominent; these require an elastic algorithm for realistic simulation. Elastic finite-differences are used to synthesize responses (both fixed-time snapshots and seismogram profiles) for a series of two-dimensional models of increasing complexity. Special emphasis is given to guided waves in continuous and segmented low-velocity zones.
Style APA, Harvard, Vancouver, ISO itp.
32

Liou, Hong-Cin, Fabrizio Sabba, Aaron I. Packman, George Wells i Oluwaseyi Balogun. "Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave propagation using optical coherence elastography". Soft Matter 15, nr 4 (2019): 575–86. http://dx.doi.org/10.1039/c8sm01902a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yu, J. G., i X. F. Dong. "Elastic Waves in Piezoelectric Spherical Curved Plates". Key Engineering Materials 455 (grudzień 2010): 672–77. http://dx.doi.org/10.4028/www.scientific.net/kem.455.672.

Pełny tekst źródła
Streszczenie:
Based on linear three-dimensional piezoelasticity, an orthogonal polynomial approach is used for determining the elastic wave characteristics of piezoelectric spherical curved plates. The displacement components and electric potential, expanded in a series of Legendre polynomials, are introduced into the governing equations along with position-dependent material constants so that the solution of the wave equation is reduced to an eigenvalue problem. Guided wave dispersion curves for PZT-4 spherical curved plates are calculated. Corresponding mechanical displacement and electric potential distributions are illustrated. The influence of the ratio of radius to thickness on the wave characteristics is discussed.
Style APA, Harvard, Vancouver, ISO itp.
34

Lobkis, O. I., i D. E. Chimenti. "Elastic guided waves in plates with surface roughness. II. Experiments". Journal of the Acoustical Society of America 102, nr 1 (lipiec 1997): 150–59. http://dx.doi.org/10.1121/1.419773.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Bi-Xing, Zhang, Cui Han-Yin, Xiao Bo-Xun i Zhang Cheng-Guang. "Guided Waves in a Multi-Layered Cylindrical Elastic Solid Medium". Chinese Physics Letters 24, nr 10 (28.09.2007): 2883–86. http://dx.doi.org/10.1088/0256-307x/24/10/048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Radzieński, M., Ł. Doliński, M. Krawczuk, A. Żak i W. Ostachowicz. "Application of RMS for damage detection by guided elastic waves". Journal of Physics: Conference Series 305 (19.07.2011): 012085. http://dx.doi.org/10.1088/1742-6596/305/1/012085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Żak, A., M. Radzieński, M. Krawczuk i W. Ostachowicz. "Damage detection strategies based on propagation of guided elastic waves". Smart Materials and Structures 21, nr 3 (17.02.2012): 035024. http://dx.doi.org/10.1088/0964-1726/21/3/035024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Tang, Xiao-Ming, Chen Li i Douglas J. Patterson. "A curve-fitting technique for determining dispersion characteristics of guided elastic waves". GEOPHYSICS 75, nr 3 (maj 2010): E153—E160. http://dx.doi.org/10.1190/1.3420736.

Pełny tekst źródła
Streszczenie:
We have developed a novel curve-fitting method to estimate dispersion characteristics of guided elastic waves and investigate its application to field wireline and logging while drilling (LWD) acoustic data processing. In an elastic waveguide such as a fluid-filled borehole with a logging tool, the frequency dispersion of a guided-wave mode is characterized by a monotonically varying dispersion curve bounded by its low- and high-frequency limits. The detailed behavior of the curves relates to various elastic/acoustic parameters of the complicated waveguide structure. The novelty of the proposed technique is that it simulates the multiparameter dispersion curve using a simple analytical function that has only four parameters. By adjusting the four parameters to fit the actual wave dispersion data, the wave’s dispersion characteristics can be satisfactorily determined. The result of this simple approach leads to several important applications in acoustic logging. The first is to correct the dispersion effect in the shear-wave velocity from wireline dipole acoustic logging. The second application obtains P-wave velocity from the dispersive leaky compressional-wave data from wireline or LWD measurements. Third, the technique is applied to obtain shear-wave velocity from LWD quadrupole shear-wave logging. Finally, the technique is applicable to layered waveguide structures encountered in surface seismic exploration.
Style APA, Harvard, Vancouver, ISO itp.
39

Mukdadi, O. M., S. K. Datta i M. L. Dunn. "Elastic Guided Waves in a Layered Plate With a Rectangular Cross Section". Journal of Pressure Vessel Technology 124, nr 3 (26.07.2002): 319–25. http://dx.doi.org/10.1115/1.1491582.

Pełny tekst źródła
Streszczenie:
Ultrasonic guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) are studied in this paper. A semi-analytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the long dimension of the plate is used. The method is applicable to an arbitrary number of layers of anisotropic properties and is similar to that used earlier to study guided waves in layered anisotropic plates of infinite width. Numerical results are presented for acoustic phonon modes of quasi-one-dimensional (QID) wires. For homogeneous wires, these agree well with recently reported results for dispersion of these modes.
Style APA, Harvard, Vancouver, ISO itp.
40

Karunasena, W. M., R. L. Bratton, S. K. Datta i A. H. Shah. "Elastic Wave Propagation in Laminated Composite Plates". Journal of Engineering Materials and Technology 113, nr 4 (1.10.1991): 411–18. http://dx.doi.org/10.1115/1.2904119.

Pełny tekst źródła
Streszczenie:
A stiffness method and an analytical method have been used to study the dispersion characteristics of guided waves in laminated composite plates. Both cross-ply and angle-ply plates have been considered in the analysis. The objective of the study is to analyze the effect of fiber orientation, ply layout configuration, and number of layers on the dispersion characteristics. A Rayleigh-Ritz type of approximation of the through-thickness variation of the displacements that maintain continuity of displacements and tractions at the interfaces between the layers has been used in the stiffness method. The analytical method solves the exact dispersion relation of the laminated plate by using the Muller’s method with initial guesses obtained through the stiffness method. Both methods are applicable to plates with arbitrary number of layers having distinct mechanical properties. Numerical results presented show strong influence of anisotropy on the guided waves.
Style APA, Harvard, Vancouver, ISO itp.
41

Mal, Ajit K., Pei-cheng Xu i Yoseph Bar-Cohen. "Leaky Lamb Waves for the Ultrasonic Nondestructive Evaluation of Adhesive Bonds". Journal of Engineering Materials and Technology 112, nr 3 (1.07.1990): 255–59. http://dx.doi.org/10.1115/1.2903319.

Pełny tekst źródła
Streszczenie:
The critical role played by interface zones in the fracture and failure of composites and other bonded materials is well known. However, the existing nondestructive evaluation methods are not capable of yielding useful quantitative information on either elastic or strength related properties of the interface. The authors are investigating the feasibility of applying an ultrasonic method to determine some of the interface properties nondestructively. The method uses guided waves and is based on the fact that the dispersive properties of these waves are strongly affected by the elastic properties of the interface. A coordinated theoretical and experimental program of research has revealed that the correlation between the interfacial properties and the phase velocity of the guided waves is quite strong and is identifiable at least in laboratory specimens. Some recent results of this research are reported in this paper.
Style APA, Harvard, Vancouver, ISO itp.
42

Gautesen, A. K. "Surface Waves Guided by the Exterior of a Rectangular Elastic Solid". Journal of Applied Mechanics 53, nr 2 (1.06.1986): 379–81. http://dx.doi.org/10.1115/1.3171767.

Pełny tekst źródła
Streszczenie:
We show that surface waves can be guided on the exterior of an isotropic elastic bar with a rectangular cross section. We assume that the dimensionless wavenumber is sufficiently large that elastodynamic ray theory is valid. Dispersion relations are obtained and representative curves for various cross sections are shown.
Style APA, Harvard, Vancouver, ISO itp.
43

Park, Kyung-Jo. "Characterization and Detection of Sludge inside Pipes Using Guided Elastic Waves". Journal of Power System Engineering 26, nr 1 (28.02.2022): 65–71. http://dx.doi.org/10.9726/kspse.2022.26.1.065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Fraguela Collar, A. "Guided waves in a fluid layer on an elastic irregular bottom". Publicacions Matemàtiques 40 (1.07.1996): 243–76. http://dx.doi.org/10.5565/publmat_40296_02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lobkis, O. I., i D. E. Chimenti. "Elastic guided waves in plates with surface roughness. I. Model calculation". Journal of the Acoustical Society of America 102, nr 1 (lipiec 1997): 143–49. http://dx.doi.org/10.1121/1.419772.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Pelts, S. P., i J. L. Rose. "Source influence parameters on elastic guided waves in an orthotropic plate". Journal of the Acoustical Society of America 99, nr 4 (kwiecień 1996): 2124–29. http://dx.doi.org/10.1121/1.415399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Guillet, Arnaud, Mounsif Ech Cherif El Kettani i Francine Luppe. "Guided waves’ propagation in an elastic plate of linearly varying thickness". Journal of the Acoustical Society of America 105, nr 2 (luty 1999): 1340. http://dx.doi.org/10.1121/1.426357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Ishii, Yosuke, Shiro Biwa i Tadaharu Adachi. "Non-collinear interaction of guided elastic waves in an isotropic plate". Journal of Sound and Vibration 419 (kwiecień 2018): 390–404. http://dx.doi.org/10.1016/j.jsv.2018.01.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Yan, Dong-Jia, A.-Li Chen, Yue-Sheng Wang, Chuanzeng Zhang i Mikhail Golub. "Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites". European Journal of Mechanics - A/Solids 66 (listopad 2017): 158–67. http://dx.doi.org/10.1016/j.euromechsol.2017.07.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Bochud, Nicolas, Jérôme Laurent, François Bruno, Aurélien Baelde, Daniel Royer i Claire Prada. "Toward real-time assessment of material properties using elastic guided waves". Journal of the Acoustical Society of America 141, nr 5 (maj 2017): 3904. http://dx.doi.org/10.1121/1.4988795.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii