Artykuły w czasopismach na temat „GUAR GUM DERIVATIVES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „GUAR GUM DERIVATIVES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Iqbal, Dure Najaf, Arif Nazir, Munawar Iqbal i Muhammad Yameen. "Green synthesis and characterization of carboxymethyl guar gum: Application in textile printing technology". Green Processing and Synthesis 9, nr 1 (17.03.2020): 212–18. http://dx.doi.org/10.1515/gps-2020-0022.
Pełny tekst źródłaVyšvařil, Martin, Michaela Hegrová i Tomáš Žižlavský. "Rheological Properties of Lime Mortars with Guar Gum Derivatives". Key Engineering Materials 760 (styczeń 2018): 257–65. http://dx.doi.org/10.4028/www.scientific.net/kem.760.257.
Pełny tekst źródłaGiri, Pankaj, Simran Kaur Zandu i Inderbir Singh. "Chemical Modifications of Guar Gum for Drug Delivery Applications: A Review". Asian Journal of Chemistry 32, nr 6 (2020): 1259–65. http://dx.doi.org/10.14233/ajchem.2020.22607.
Pełny tekst źródłaKapoor, Meenu, Dhriti Khandal, Ruchi Gupta, Pinklesh Arora, Geetha Seshadri, Saroj Aggarwal i Rakesh Kumar Khandal. "Certain Rheological Aspects of Functionalized Guar Gum". International Journal of Carbohydrate Chemistry 2013 (24.04.2013): 1–15. http://dx.doi.org/10.1155/2013/463907.
Pełny tekst źródłaLapasin, Romano, Sabrina Pricl i Paolo Tracanelli. "Rheology of hydroxyethyl guar gum derivatives". Carbohydrate Polymers 14, nr 4 (styczeń 1991): 411–27. http://dx.doi.org/10.1016/0144-8617(91)90006-x.
Pełny tekst źródłaShanmukha, M. C., A. Usha, M. K. Siddiqui, Samuel Asefa Fufa i B. M. Praveen. "Degree-Based Molecular Descriptors of Guar Gum and Its Chemical Derivatives". Journal of Chemistry 2022 (7.02.2022): 1–14. http://dx.doi.org/10.1155/2022/7371538.
Pełny tekst źródłaKazachenko, A. S., O. Yu Fetisova, A. V. Antonov, G. N. Bondarenko i V. V. Sychev. "PRODUCTION AND DESCRIPTION THE CHARACTERIZATION OF GUAR GUM GALACTOMANNAN BUTYL ETHER". IRAQI JOURNAL OF AGRICULTURAL SCIENCES 53, nr 1 (23.02.2022): 198–206. http://dx.doi.org/10.36103/ijas.v53i1.1525.
Pełny tekst źródłaPrabhanjan, H., M. M. Gharia i H. C. Srivastava. "Guar gum derivatives. II. Foaming properties of hydroxyalkyl derivatives". Carbohydrate Polymers 12, nr 1 (styczeń 1990): 1–7. http://dx.doi.org/10.1016/0144-8617(90)90100-7.
Pełny tekst źródłaDodi, Gianina, Rosina E. Sabau, Bianca E. B. Crețu i Ioannis Gardikiotis. "Exploring the Antioxidant Potential of Gellan and Guar Gums in Wound Healing". Pharmaceutics 15, nr 8 (17.08.2023): 2152. http://dx.doi.org/10.3390/pharmaceutics15082152.
Pełny tekst źródłaSwamy, N. G. N., T. S. Dharmarajan, K. L. K. Paranjothi i Z. Abbas. "A REVIEW ON DERIVATIZATION OF GUAR AND STUDY OF PHARMACEUTICAL APPLICATIONS OF GUAR DERIVATIVES". INDIAN DRUGS 51, nr 01 (28.01.2014): 5–17. http://dx.doi.org/10.53879/id.51.01.p0005.
Pełny tekst źródłaZhang, Minghua, Jianping He, Mingyu Deng, Peixin Gong, Xi Zhang, Minmin Fan i Ke Wang. "Rheological behaviours of guar gum derivatives with hydrophobic unsaturated long-chains". RSC Advances 10, nr 53 (2020): 32050–57. http://dx.doi.org/10.1039/d0ra04322b.
Pełny tekst źródłaPrabhanjan, H., M. M. Gharia i H. C. Srivastava. "Guar gum derivatives. Part I: Preparation and properties". Carbohydrate Polymers 11, nr 4 (styczeń 1989): 279–92. http://dx.doi.org/10.1016/0144-8617(89)90003-9.
Pełny tekst źródłaEggers, Katharina, Daniel Szopinski i Gerrit A. Luinstra. "Thermo-Responsive Microcapsules Based on Guar Gum Derivatives". Macromolecular Symposia 346, nr 1 (grudzień 2014): 32–35. http://dx.doi.org/10.1002/masy.201400055.
Pełny tekst źródłaBahamdan, Ahmad, i William H. Daly. "Hydrophobic guar gum derivatives prepared by controlled grafting processes". Polymers for Advanced Technologies 18, nr 8 (2007): 652–59. http://dx.doi.org/10.1002/pat.874.
Pełny tekst źródłaŽižlavský, Tomáš, Martin Vyšvařil, Patrik Bayer i Pavla Rovnaníková. "Influence of Guar Gum Derivatives on Hardened Properties of Aerial Lime-Based Mortars". Key Engineering Materials 760 (styczeń 2018): 22–29. http://dx.doi.org/10.4028/www.scientific.net/kem.760.22.
Pełny tekst źródłaHussain, Majid, Tahir Zahoor, Saeed Akhtar, Amir Ismail i Aneela Hameed. "Thermal stability and haemolytic effects of depolymerized guar gum derivatives". Journal of Food Science and Technology 55, nr 3 (25.01.2018): 1047–55. http://dx.doi.org/10.1007/s13197-017-3018-5.
Pełny tekst źródłaHuang, Haolin, Junzhang Lin, Weidong Wang i Shuang Li. "Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production". Polymers 14, nr 9 (9.05.2022): 1920. http://dx.doi.org/10.3390/polym14091920.
Pełny tekst źródłaDasankoppa, F. S., i N. G. N. Swamy. "DESIGN, DEVELOPMENT AND EVALUATION OF CATIONIC GUAR AND HYDROXYPROPYL GUAR BASED IN SITU GELS FOR OPHTHALMIC DRUG DELIVERY". INDIAN DRUGS 50, nr 01 (28.01.2013): 30–41. http://dx.doi.org/10.53879/id.50.01.p0030.
Pełny tekst źródłaGhosh, Indrasena, Chhaya Sharma i Rita Tandon. "Comparative study of guar gum and its cationic derivatives as pre-flocculating polymers for PCC fillers in papermaking applications". April 2022 21, nr 4 (1.05.2022): 203–16. http://dx.doi.org/10.32964/tj21.4.203.
Pełny tekst źródłaSarkar, Shatabhisa, Sumit Gupta, Prasad S. Variyar, Arun Sharma i Rekha S. Singhal. "Hydrophobic derivatives of guar gum hydrolyzate and gum Arabic as matrices for microencapsulation of mint oil". Carbohydrate Polymers 95, nr 1 (czerwiec 2013): 177–82. http://dx.doi.org/10.1016/j.carbpol.2013.02.070.
Pełny tekst źródłaHasan, Abdulraheim M. A., i Manar E. Abdel-Raouf. "Applications of guar gum and its derivatives in petroleum industry: A review". Egyptian Journal of Petroleum 27, nr 4 (grudzień 2018): 1043–50. http://dx.doi.org/10.1016/j.ejpe.2018.03.005.
Pełny tekst źródłaLapasin, Romano, Lorenzo De Lorenzi, Sabrina Pricl i Giovanni Torriano. "Flow properties of hydroxypropyl guar gum and its long-chain hydrophobic derivatives". Carbohydrate Polymers 28, nr 3 (listopad 1995): 195–202. http://dx.doi.org/10.1016/0144-8617(95)00134-4.
Pełny tekst źródłaGangotri, Waikhom, Ruchi Jain-Raina i Shashi B. Babbar. "Evaluation of guar gum derivatives as gelling agents for microbial culture media". World Journal of Microbiology and Biotechnology 28, nr 5 (2.03.2012): 2279–85. http://dx.doi.org/10.1007/s11274-012-1027-0.
Pełny tekst źródłaPrabaharan, M. "Prospective of guar gum and its derivatives as controlled drug delivery systems". International Journal of Biological Macromolecules 49, nr 2 (sierpień 2011): 117–24. http://dx.doi.org/10.1016/j.ijbiomac.2011.04.022.
Pełny tekst źródłaKaur, Simran, i Soumava Santra. "Recent Progress in Chemical Modification of the Natural Polysaccharide Guar Gum". Current Organic Synthesis 19, nr 2 (marzec 2022): 197–219. http://dx.doi.org/10.2174/1570179418666211109105416.
Pełny tekst źródłaKrishna, Shweta Kumari, Deepak Yadav i Sunil K. Sharma. "Cu (II) Schiff base complex grafted guar gum: Catalyst for benzophenone derivatives synthesis". Applied Catalysis A: General 601 (lipiec 2020): 117529. http://dx.doi.org/10.1016/j.apcata.2020.117529.
Pełny tekst źródłaWu, Meng. "Shear-thinning and viscosity synergism in mixed solution of guar gum and its etherified derivatives". Polymer Bulletin 63, nr 6 (30.06.2009): 853–63. http://dx.doi.org/10.1007/s00289-009-0127-y.
Pełny tekst źródłaRíos, José-Luis, Isabel Andújar, Guillermo R. Schinella i Flavio Francini. "Modulation of Diabetes by Natural Products and Medicinal Plants via Incretins". Planta Medica 85, nr 11/12 (7.05.2019): 825–39. http://dx.doi.org/10.1055/a-0897-7492.
Pełny tekst źródłaAnsari, Zoha, i Sangeet Goomer. "Natural Gums and Carbohydrate-Based Polymers: Potential Encapsulants". Indo Global Journal of Pharmaceutical Sciences 12 (2022): 01–20. http://dx.doi.org/10.35652/igjps.2022.12001.
Pełny tekst źródłaLi, Nan, Guangxue Chena i Wei Chen. "Synthesis of Guar Gum Derivatives in [BMIM]Cl Ionic liquids and their Application on Pulping and Papermaking". NIP & Digital Fabrication Conference 32, nr 1 (12.09.2016): 291–93. http://dx.doi.org/10.2352/issn.2169-4451.2017.32.291.
Pełny tekst źródłaGovin, Alexandre, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella i Philippe Grosseau. "Modification of water retention and rheological properties of fresh state cement-based mortars by guar gum derivatives". Construction and Building Materials 122 (wrzesień 2016): 772–80. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.125.
Pełny tekst źródłaLi, Nan, Guangxue Chena i Wei Chen. "Synthesis of Guar Gum Derivatives in [BMIM]Cl Ionic liquids and their Application on Pulping and Papermaking". NIP & Digital Fabrication Conference 32, nr 1 (12.09.2016): 291–93. http://dx.doi.org/10.2352/issn.2169-4451.2016.32.1.art00074_1.
Pełny tekst źródłaLaGrone, C. C., S. A. Baumgartner i R. A. Woodroof. "Chemical Evolution of a High- Temperature Fracturing Fluid". Society of Petroleum Engineers Journal 25, nr 05 (1.10.1985): 623–28. http://dx.doi.org/10.2118/11794-pa.
Pełny tekst źródłaVaghela, Chetana, Mohan Kulkarni, Meena Karve i Smita Zinjarde. "Selective electrochemical sensing of bisphenol derivatives using novel bioelectrode of agarose-guar gum-graphene oxide immobilized with tyrosinase". Journal of Environmental Chemical Engineering 10, nr 3 (czerwiec 2022): 107360. http://dx.doi.org/10.1016/j.jece.2022.107360.
Pełny tekst źródłaZhang, Li-Ming, Jian-Fang Zhou i Peter S. Hui. "A comparative study on viscosity behavior of water-soluble chemically modified guar gum derivatives with different functional lateral groups". Journal of the Science of Food and Agriculture 85, nr 15 (2005): 2638–44. http://dx.doi.org/10.1002/jsfa.2308.
Pełny tekst źródłaBahamdan, Ahmad, i William H. Daly. "Hydrophobic guar gum derivatives prepared by controlled grafting processes–Part II: rheological and degradation properties toward fracturing fluids applications". Polymers for Advanced Technologies 18, nr 8 (2007): 660–72. http://dx.doi.org/10.1002/pat.875.
Pełny tekst źródłaZizlavsky, T., M. Vysvaril i P. Rovnanikova. "Rheological study on influence of hydroxypropyl derivatives of guar gum, cellulose, and chitosan on the properties of natural hydraulic lime pastes". IOP Conference Series: Materials Science and Engineering 583 (14.08.2019): 012009. http://dx.doi.org/10.1088/1757-899x/583/1/012009.
Pełny tekst źródłaYagoub, Hajo, Liping Zhu, Mahmoud H. M. A. Shibraen, Ali A. Altam, Dafaalla M. D. Babiker, Songmiao Liang, Yan Jin i Shuguang Yang. "Complex Aerogels Generated from Nano-Polysaccharides and Its Derivatives for Oil–Water Separation". Polymers 11, nr 10 (29.09.2019): 1593. http://dx.doi.org/10.3390/polym11101593.
Pełny tekst źródłaVyšvařil, Martin, Michaela Hegrová i Tomáš Žižlavský. "Influence of Cellulose Ethers on Fresh State Properties of Lime Mortars". Solid State Phenomena 276 (czerwiec 2018): 69–74. http://dx.doi.org/10.4028/www.scientific.net/ssp.276.69.
Pełny tekst źródłaViswanad, Vidya, Shammika P i Aneesh Tp. "FORMULATION AND EVALUATION OF SYNTHESIZED QUINAZOLINONE DERIVATIVE FOR COLON SPECIFIC DRUG DELIVERY". Asian Journal of Pharmaceutical and Clinical Research 10, nr 3 (1.03.2017): 207. http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16024.
Pełny tekst źródłaLiu, Zhiqin, Jiafang Xu, Wei Peng, Xiaodong Yu i Jie Chen. "The Evaluation and Application of SmartGel for Deepwater Loss-Circulation Control". Processes 11, nr 7 (23.06.2023): 1890. http://dx.doi.org/10.3390/pr11071890.
Pełny tekst źródłaRathore, Monika, i Aresh Vikram Singh. "Development and Application of Newly Synthesized Guar gum Diamino Benzoic Acid (GDABA) Resin for Elimination of Hazardous Waste Metal Ions from Industrial Effluents". Oriental Journal Of Chemistry 39, nr 1 (28.02.2023): 216–21. http://dx.doi.org/10.13005/ojc/390127.
Pełny tekst źródłaDeshmukh, Payal, Nikita Upadhyaya, Sunita Patidar i Rajat Pawar. "Probiotic-Assisted Colon-Specific Delivery of Anti-Inflammatory Drug – 5 ASA". International Journal of Pharmaceutical Sciences and Medicine 7, nr 10 (30.10.2022): 119–35. http://dx.doi.org/10.47760/ijpsm.2022.v07i10.007.
Pełny tekst źródłaPressi, Giovanna, Elisa Barbieri, Raffaella Rizzi, Giovanni Tafuro, Alessia Costantini, Elisa Di Domenico i Alessandra Semenzato. "Formulation and Physical Characterization of a Polysaccharidic Gel for the Vehiculation of an Insoluble Phytoextract for Mucosal Application". Polysaccharides 3, nr 4 (9.11.2022): 728–44. http://dx.doi.org/10.3390/polysaccharides3040042.
Pełny tekst źródłaSzopinski, Daniel, i Gerrit A. Luinstra. "Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS)". Carbohydrate Polymers 153 (listopad 2016): 312–19. http://dx.doi.org/10.1016/j.carbpol.2016.07.095.
Pełny tekst źródłaBisht, Tulsi, i Rishishwar Poonam. "A Comparative Study of Matrix Tablets Designed by Different Methods". International Journal of Pharmaceutical Sciences and Nanotechnology 10, nr 2 (31.03.2017): 3645–52. http://dx.doi.org/10.37285/ijpsn.2017.10.2.2.
Pełny tekst źródłaSzopinski, Daniel, Ulrich A. Handge, Werner-Michael Kulicke, Volker Abetz i Gerrit A. Luinstra. "Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER)". Carbohydrate Polymers 136 (styczeń 2016): 834–40. http://dx.doi.org/10.1016/j.carbpol.2015.09.067.
Pełny tekst źródłaEl-hoshoudy, A. N., E. G. Zaki i S. M. Elsaeed. "Experimental and Monte Carlo simulation of palmitate-guar gum derivative as a novel flooding agent in the underground reservoir". Journal of Molecular Liquids 302 (marzec 2020): 112502. http://dx.doi.org/10.1016/j.molliq.2020.112502.
Pełny tekst źródłaWang, Li, i Li-Ming Zhang. "Viscoelastic characterization of a new guar gum derivative containing anionic carboxymethyl and cationic 2-hydroxy-3-(trimethylammonio)propyl substituents". Industrial Crops and Products 29, nr 2-3 (marzec 2009): 524–29. http://dx.doi.org/10.1016/j.indcrop.2008.10.003.
Pełny tekst źródłaYokosawa, Mary M., i Elisabete Frollini. "EFFECT OF THE ADDITION OF A CATIONIC DERIVATIVE OF THE NATURAL POLYSACCHARIDE GUAR GUM ON THE STABILITY OF AN AQUEOUS DISPERSION OF ALUMINA". Journal of Macromolecular Science, Part A 39, nr 7 (26.06.2002): 709–21. http://dx.doi.org/10.1081/ma-120004513.
Pełny tekst źródła