Artykuły w czasopismach na temat „GTPase”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: GTPase.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „GTPase”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Irving, Helen R. "Abscisic acid induction of GTP hydrolysis in maize coleoptile plasma membranes". Functional Plant Biology 25, nr 5 (1998): 539. http://dx.doi.org/10.1071/pp98009.

Pełny tekst źródła
Streszczenie:
Since receptor-coupled G proteins increase GTP hydrolysis (GTPase) activity upon ligands binding to the receptor, a study was undertaken to determine if abscisic acid (ABA) induced such an effect. Plasma membranes isolated from etiolated maize (Zea mays L.) coleoptiles were enriched in GTPase activity relative to microsomal fractions. Vanadate was included in the assay to inhibit the high levels of vanadate sensitive low affinity GTPases present. Under these conditions, GTPase activity was enhanced by Mg2+, stimulated by mastoparan, and inhibited by GTPγS indicating the presence of either monomeric or heterotrimeric G proteins. The combination of NaF and AlCl3 is expected to inhibit heterotrimeric G protein activity but had little effect on GTPase activity in maize coleoptile membranes. Cholera toxin enhanced basal GTPase activity, confirming the presence of heterotrimeric G proteins in maize plasma membranes. Pertussis toxin also slightly enhanced basal GTPase activity in maize membranes. Abscisic acid enhanced GTPase activity optimally at 5 mmol/L Mg2+ in a concentration dependent manner by 1.5-fold at 10 µmol/L and up to three-fold at 100 µmol/L ABA. Abscisic acid induced GTPase activity was inhibited by GTPγS, the combination of NaF and AlCl3, and pertussis toxin. Overall, these results are typical of a receptor-coupled G protein responding to its ligand.
Style APA, Harvard, Vancouver, ISO itp.
2

Herrmann, Andrea, Britta A. M. Tillmann, Janine Schürmann, Michael Bölker i Paul Tudzynski. "Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea". Eukaryotic Cell 13, nr 4 (31.01.2014): 470–82. http://dx.doi.org/10.1128/ec.00332-13.

Pełny tekst źródła
Streszczenie:
ABSTRACTMonomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability ofClaviceps purpureato infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling inC. purpurea.
Style APA, Harvard, Vancouver, ISO itp.
3

Humphries, Brock A., Zhishan Wang i Chengfeng Yang. "MicroRNA Regulation of the Small Rho GTPase Regulators—Complexities and Opportunities in Targeting Cancer Metastasis". Cancers 12, nr 5 (28.04.2020): 1092. http://dx.doi.org/10.3390/cancers12051092.

Pełny tekst źródła
Streszczenie:
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Style APA, Harvard, Vancouver, ISO itp.
4

Kötting, Carsten, i Klaus Gerwert. "What vibrations tell us about GTPases". Biological Chemistry 396, nr 2 (1.02.2015): 131–44. http://dx.doi.org/10.1515/hsz-2014-0219.

Pełny tekst źródła
Streszczenie:
Abstract In this review, we discuss how time-resolved Fourier transform infrared (FTIR) spectroscopy is used to understand how GTP hydrolysis is catalyzed by small GTPases and their cognate GTPase-activating proteins (GAPs). By interaction with small GTPases, GAPs regulate important signal transduction pathways and transport mechanisms in cells. The GTPase reaction terminates signaling and controls transport. Dysfunctions of GTP hydrolysis in these proteins are linked to serious diseases including cancer. Using FTIR, we resolved both the intrinsic and GAP-catalyzed GTPase reaction of the small GTPase Ras with high spatiotemporal resolution and atomic detail. This provided detailed insight into the order of events and how the active site is completed for catalysis. Comparisons of Ras with other small GTPases revealed conservation and variation in the catalytic mechanisms. The approach was extended to more nearly physiological conditions at a membrane. Interactions of membrane-anchored GTPases and their extraction from the membrane are studied using the attenuated total reflection (ATR) technique.
Style APA, Harvard, Vancouver, ISO itp.
5

Shan, Shu-ou, Sowmya Chandrasekar i Peter Walter. "Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation". Journal of Cell Biology 178, nr 4 (6.08.2007): 611–20. http://dx.doi.org/10.1083/jcb.200702018.

Pełny tekst źródła
Streszczenie:
During cotranslational protein targeting, two guanosine triphosphatase (GTPase) in the signal recognition particle (SRP) and its receptor (SR) form a unique complex in which hydrolyses of both guanosine triphosphates (GTP) are activated in a shared active site. It was thought that GTP hydrolysis drives the recycling of SRP and SR, but is not crucial for protein targeting. Here, we examined the translocation efficiency of mutant GTPases that block the interaction between SRP and SR at specific stages. Surprisingly, mutants that allow SRP–SR complex assembly but block GTPase activation severely compromise protein translocation. These mutations map to the highly conserved insertion box domain loops that rearrange upon complex formation to form multiple catalytic interactions with the two GTPs. Thus, although GTP hydrolysis is not required, the molecular rearrangements that lead to GTPase activation are essential for protein targeting. Most importantly, our results show that an elaborate rearrangement within the SRP–SR GTPase complex is required to drive the unloading and initiate translocation of cargo proteins.
Style APA, Harvard, Vancouver, ISO itp.
6

Nur-E-Kamal, M. S., i H. Maruta. "The role of Gln61 and Glu63 of Ras GTPases in their activation by NF1 and Ras GAP." Molecular Biology of the Cell 3, nr 12 (grudzień 1992): 1437–42. http://dx.doi.org/10.1091/mbc.3.12.1437.

Pełny tekst źródła
Streszczenie:
Two distinct GAPs of 120 and 235 kDa called GAP1 and NF1 serve as attenuators of Ras, a member of GTP-dependent signal transducers, by stimulating its intrinsic guanosine triphosphatase (GTPase) activity. The GAP1 (also called Ras GAP) is highly specific for Ras and does not stimulate the intrinsic GTPase activity of Rap1 or Rho. Using GAP1C, the C-terminal GTPase activating domain (residues 720-1044) of bovine GAP1, we have shown previously that the GAP1 specificity is determined by the Ras domain (residues 61-65) where Gln61 plays the primary role. The corresponding domain (residues 1175-1531) of human NF1 (called NF1C), which shares only 26% sequence identity with the GAP1C, also activates Ras GTPases. In this article, we demonstrate that the NF1C, like the GAP1C, is highly specific for Ras and does not activate either Rap1 or Rho GTPases. Furthermore, using a series of chimeric Ras/Rap1 and mutated Ras GTPases, we show that Gln at position 61 of the GTPases primarily determines that NF1C as well as GAP1C activates Ras GTPases, but not Rap1 GTPases, and Glu at position 63 of the GTPases is required for maximizing the sensitivity of Ras GTPases to both NF1C and GAP1C. Interestingly, replacement of Glu63 of c-HaRas by Lys reduces its intrinsic GTPase activity and abolishes the GTPase activation by both NF1C and GAP1C. Thus, the potentiation of oncogenicity by Lys63 mutation of c-HaRas appears primarily to be due to the loss of its sensitivity to the two major Ras signal attenuators (NF1 and GAP1).
Style APA, Harvard, Vancouver, ISO itp.
7

Killoran, Ryan C., i Matthew J. Smith. "Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel". Journal of Biological Chemistry 294, nr 25 (14.05.2019): 9937–48. http://dx.doi.org/10.1074/jbc.ra119.008653.

Pełny tekst źródła
Streszczenie:
Small GTPases alternatively bind GDP/GTP guanine nucleotides to gate signaling pathways that direct most cellular processes. Numerous GTPases are implicated in oncogenesis, particularly the three RAS isoforms HRAS, KRAS, and NRAS and the RHO family GTPase RAC1. Signaling networks comprising small GTPases are highly connected, and there is some evidence of direct biochemical cross-talk between their functional G-domains. The activation potential of a given GTPase is contingent on a codependent interaction with the nucleotide and a Mg2+ ion, which bind to individual variants with distinct affinities coordinated by residues in the GTPase nucleotide-binding pocket. Here, we utilized a selective-labeling strategy coupled with real-time NMR spectroscopy to monitor nucleotide exchange, GTP hydrolysis, and effector interactions of multiple small GTPases in a single complex system. We provide insight into nucleotide preference and the role of Mg2+ in activating both WT and oncogenic mutant enzymes. Multiplexing revealed guanine nucleotide exchange factor (GEF), GTPase-activating protein (GAP), and effector-binding specificities in mixtures of GTPases and resolved that the three related RAS isoforms are biochemically equivalent. This work establishes that direct quantitation of the nucleotide-bound conformation is required to accurately determine an activation potential for any given GTPase, as small GTPases such as RAS-like proto-oncogene A (RALA) or the G12C mutant of KRAS display fast exchange kinetics but have a high affinity for GDP. Furthermore, we propose that the G-domains of small GTPases behave autonomously in solution and that nucleotide cycling proceeds independently of protein concentration but is highly impacted by Mg2+ abundance.
Style APA, Harvard, Vancouver, ISO itp.
8

Kesseler, Christoph, Julian Kahr, Natalie Waldt, Nele Stroscher, Josephine Liebig, Frank Angenstein, Elmar Kirches i Christian Mawrin. "EXTH-64. SMALL GTPASES IN MENINGIOMAS: PROLIFERATION, MIGRATION, SURVIVAL, POTENTIAL TREATMENT AND INTERACTIONS". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii101. http://dx.doi.org/10.1093/neuonc/noaa215.418.

Pełny tekst źródła
Streszczenie:
Abstract PURPOSE To evaluate the role of the small GTPases RhoA, Rac1 and Cdc42 in meningiomas as therapeutic targets and their interactions in meningiomas. EXPERIMENTAL DESIGN We analyzed expression of GTPases in human meningioma samples and meningioma cell lines of various WHO grades. Malignant IOMM-Lee meningioma cells were used to generate shRNA mediated knockdowns of GTPases RhoA, Rac1 or Cdc42 and to study knockdown effects on proliferation and migration, as well as analysis of cell morphology by confocal microscopy. The same tests were used to investigate effects of the two inhibitors Fasudil and EHT-1864 of malignant IOMM-Lee, KT21 and benign Ben-Men cells and the effects of these drugs on IOMM-Lee knockdown cells. The effects of GTPase knockdowns and Fasudil treatment were studied in terms of overall survival by intracranial xenografts of mice. Potential interactions of GTPases regarding NF2, mTOR and FAK-Paxillin were examined. RESULTS Small GTPases were upregulated in meningiomas of higher tumor grades. Reduced proliferation and migration could be achieved by GTPase knockdown in IOMM-Lee cells. Additionally, the ROCK-inhibitor Fasudil and Rac1-inhibitor EHT-1864 reduced proliferation in different meningioma cell lines and reduced proliferation and migration independent of GTPase knockdowns/status. Moreover, overall survival in vivo could also be increased by knockdowns of RhoA and Rac1 as well as Fasudil treatment. GTPase expression was affected dependent on the NF2 status but effects were not very distinct, indicating that NF2 is not strongly involved in GTPase regulation in meningiomas. In terms of mTOR and FAK-Paxillin signaling, each GTPase changes those pathways in a different manner. CONCLUSION Small GTPases are important effectors in meningioma proliferation and migration in vitro as well as survival in vivo and their inhibition should be considered as potential treatment option.
Style APA, Harvard, Vancouver, ISO itp.
9

Mohamad Ansor, Nurhuda. "PLANT-DERIVED NATURAL PRODUCTS TARGETING RHO GTPASES SIGNALLING NETWORKS FOR CANCER THERAPY: A REVIEW". Journal of Health and Translational Medicine sp2023, nr 1 (6.06.2023): 116–21. http://dx.doi.org/10.22452/jummec.sp2023no1.10.

Pełny tekst źródła
Streszczenie:
Rho GTPases are intracellular signalling molecules that involve in transducing extracellular stimuli to downstream effector of signalling pathways to elicit cellular functions. Changes in expression level of Rho GTPases and altered activities of GTPase regulators have been reported in a variety of human tumours. These modifications perturb actin cytoskeleton dynamics hence promote cancer cell development and progression. Available evidence suggests that targeting therapeutic targets in Rho GTPase signalling network may reduce the progression of cancer to metastasis stage. Pharmacological modulators of Rho GTPases have been investigated as promising chemotherapeutic intervention, which of these are natural products derived from plants. A brief overview of potential therapeutic compounds from selected plants followed by their roles in altering Rho GTPase signalling in cancer cells will be provided. There is increasing knowledge of newly discovered pharmacological modulators of Rho GTPase from natural sources to suppress cancer growth and metastasis. Future directions should emphasize on evaluating efficacies and appropriate therapeutic doses of the promising Rho GTPase modulators from plants to be used in animal models and clinical trials. Modern techniques should also be considered to improve anticancer drugs properties including increased bioavailability and localization to targeted sites.
Style APA, Harvard, Vancouver, ISO itp.
10

Rubio, I. "Use of the Ras binding domain of c-Raf for biochemical and live-cell analysis of Ras activation". Biochemical Society Transactions 33, nr 4 (1.08.2005): 662–63. http://dx.doi.org/10.1042/bst0330662.

Pełny tekst źródła
Streszczenie:
Small modular GBDs (GTPase-binding domains) derived from GTPase-effector proteins are useful tools for the selective detection of the active GTP-loaded GTPase conformation, be it in biochemical assays or for imaging purposes. Use of GBD probes requires careful consideration of all features of the GDB–GTPase interaction. It is innate to the strong and specific interaction with the GTP-loaded GTPase, that GBDs will protect their partner GTPases from GAP (GTPase-activating protein) action. This feature is likely to cause an increase in cellular Ras-GTP levels, in particular in leucocytes and other cells with high steady-state Ras-GDP/GTP cycling rates. By the same token, high levels of GBD expression will interrupt GTPase-initiated signalling, with implications for the activation of the very same GTPase since feedback regulatory mechanisms can impinge on this process.
Style APA, Harvard, Vancouver, ISO itp.
11

Cherfils, Jacqueline, i Mahel Zeghouf. "Regulation of Small GTPases by GEFs, GAPs, and GDIs". Physiological Reviews 93, nr 1 (styczeń 2013): 269–309. http://dx.doi.org/10.1152/physrev.00003.2012.

Pełny tekst źródła
Streszczenie:
Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.
Style APA, Harvard, Vancouver, ISO itp.
12

Taymans, Jean-Marc. "The GTPase function of LRRK2". Biochemical Society Transactions 40, nr 5 (19.09.2012): 1063–69. http://dx.doi.org/10.1042/bst20120133.

Pełny tekst źródła
Streszczenie:
LRRK2 (leucine-rich repeat kinase 2) is a large protein encoding multiple functional domains, including two catalytically active domains, a kinase and a GTPase domain. The LRRK2 GTPase belongs to the Ras-GTPase superfamily of GTPases, more specifically to the ROC (Ras of complex proteins) subfamily. Studies with recombinant LRRK2 protein purified from eukaryotic cells have confirmed that LRRK2 binds guanine nucleotides and catalyses the hydrolysis of GTP to GDP. LRRK2 is linked to PD (Parkinson's disease) and GTPase activity is impaired for several PD mutants located in the ROC and COR (C-terminal of ROC) domains, indicating that it is involved in PD pathogenesis. Ras family GTPases are known to function as molecular switches, and several studies have explored this possibility for LRRK2. These studies show that there is interplay between the LRRK2 GTPase function and its kinase function, with most data pointing towards a role for the kinase domain as an upstream regulator of ROC. The GTPase function is therefore a pivotal functionality within the LRRK2-mediated signalling cascade which includes partners encoded by other LRRK2 domains as well as other cellular signalling partners. The present review examines what is known of the enzymatic properties of the LRRK2 GTPase, the interplay between ROC and other LRRK2 domains, and the interplay between ROC and other cellular proteins with the dual goal to understand how LRRK2 GTPase affects cellular functions and point to future research venues.
Style APA, Harvard, Vancouver, ISO itp.
13

Mulloy, James C., Jose A. Cancelas, Marie-Dominique Filippi, Theodosia A. Kalfa, Fukun Guo i Yi Zheng. "Rho GTPases in hematopoiesis and hemopathies". Blood 115, nr 5 (4.02.2010): 936–47. http://dx.doi.org/10.1182/blood-2009-09-198127.

Pełny tekst źródła
Streszczenie:
AbstractRho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene–targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type–specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Style APA, Harvard, Vancouver, ISO itp.
14

Guo, Daji, Xiaoman Yang i Lei Shi. "Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics". Cells 9, nr 4 (31.03.2020): 835. http://dx.doi.org/10.3390/cells9040835.

Pełny tekst źródła
Streszczenie:
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Style APA, Harvard, Vancouver, ISO itp.
15

Fritz, Rafael Dominik, i Olivier Pertz. "The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns". F1000Research 5 (26.04.2016): 749. http://dx.doi.org/10.12688/f1000research.7370.1.

Pełny tekst źródła
Streszczenie:
Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity.
Style APA, Harvard, Vancouver, ISO itp.
16

Estevez, Ana Y., Tamara Bond i Kevin Strange. "Regulation of I Cl,swell in neuroblastoma cells by G protein signaling pathways". American Journal of Physiology-Cell Physiology 281, nr 1 (1.07.2001): C89—C98. http://dx.doi.org/10.1152/ajpcell.2001.281.1.c89.

Pełny tekst źródła
Streszczenie:
Guanosine 5′- O-(3-thiotriphosphate) (GTPγS) activated the I Cl,swell anion channel in N1E115 neuroblastoma cells in a swelling-independent manner. GTPγS-induced current was unaffected by ATP removal and broadly selective tyrosine kinase inhibitors, demonstrating that phosphorylation events do not regulate G protein-dependent channel activation. Pertussis toxin had no effect on GTPγS-induced current. However, cholera toxin inhibited the current ∼70%. Exposure of cells to 8-bromoadenosine 3′,5′-cyclic monophosphate did not mimic the effect of cholera toxin, and its inhibitory action was not prevented by treatment of cells with an inhibitor of adenylyl cyclase. These results demonstrate that GTPγS does not act through Gαi/o GTPases and that Gαs/Gβγ G proteins inhibit the channel and/or channel regulatory mechanisms through cAMP-independent mechanisms. Swelling-induced activation of I Cl,swell was stimulated two- to threefold by GTPγS and inhibited by 10 mM guanosine 5′- O-(2-thiodiphosphate). The Rho GTPase inhibitor Clostridium difficile toxin B inhibited both GTPγS- and swelling-induced activation of I Cl,swell. Taken together, these findings indicate that Rho GTPase signaling pathways regulate the I Cl,swell channel via phosphorylation-independent mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
17

Hladyshau, Siarhei, Jorik P. Stoop, Kosei Kamada, Shuyi Nie i Denis Tsygankov. "Spatiotemporal Coordination of Rac1 and Cdc42 at the Whole Cell Level during Cell Ruffling". Cells 12, nr 12 (15.06.2023): 1638. http://dx.doi.org/10.3390/cells12121638.

Pełny tekst źródła
Streszczenie:
Rho-GTPases are central regulators within a complex signaling network that controls cytoskeletal organization and cell movement. The network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, along with their numerous effectors that provide mutual regulation through feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling, using a simulation model that couples GTPase signaling with cell morphodynamics and captures the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of time-lapsed recordings of cell dynamics and GTPase activity. Our data-driven modeling approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.
Style APA, Harvard, Vancouver, ISO itp.
18

Saliani, Mahsa, Amin Mirzaiebadizi, Niloufar Mosaddeghzadeh i Mohammad Reza Ahmadian. "RHO GTPase-Related Long Noncoding RNAs in Human Cancers". Cancers 13, nr 21 (27.10.2021): 5386. http://dx.doi.org/10.3390/cancers13215386.

Pełny tekst źródła
Streszczenie:
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Style APA, Harvard, Vancouver, ISO itp.
19

LIANG, Zhimin, Timothy MATHER i Guangpu LI. "GTPase mechanism and function: new insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5". Biochemical Journal 346, nr 2 (22.02.2000): 501–8. http://dx.doi.org/10.1042/bj3460501.

Pełny tekst źródła
Streszczenie:
Structural and biochemical data indicate the importance of the phosphate-binding loop residues Gly12 and Gly13 of Ras both in the GTP hydrolysis reaction and in biological activity, but these two residues are not conserved in other Ras-related GTPases. To gain a better understanding of this region in GTP hydrolysis and GTPase function, we used the Ras-related Rab5 GTPase as a model for comparison, and substituted the Ala30 residue (the equivalent of Gly13 of Ras) with all the other 19 amino acids. The resulting mutants were analysed for GTP hydrolysis, GTP binding, GTP dissociation and biological activity. Only the substitution of alanine with proline reduced the GTPase activity by an order of magnitude. This effect is in sharp contrast with the observation that a proline substitution at the neighbouring position (Gly12 of Ras) has little effect on the GTPase activity. Whereas most other substitutions showed either a small negative effect or no effect on the GTPase activity, the arginine substitution surprisingly stimulated the GTPase activity by 5-fold. Molecular modelling suggests that this built-in arginine mimics the catalytic arginine residues found in trimeric GTPases and GTPase-activating proteins in providing the positive charge to facilitate the GTP hydrolysis reaction. We investigated further the biological activity of the Rab5 mutants in relation to stimulating endocytosis. When expressed in cultured baby hamster kidney cells, both arginine and proline mutants, like wild-type Rab5, stimulated endocytosis. However, the arginine mutant was a more potent stimulator than the proline mutant (3-fold stimulation as against 1.7-fold). The tryptophan mutant, on the other hand, was completely deficient in activity in terms of the stimulation of endocytosis, demonstrating the importance of the phosphate-binding loop in Rab GTPase function.
Style APA, Harvard, Vancouver, ISO itp.
20

Anderson, Erik L., i Michael J. Hamann. "Detection of Rho GEF and GAP activity through a sensitive split luciferase assay system". Biochemical Journal 441, nr 3 (16.01.2012): 869–80. http://dx.doi.org/10.1042/bj20111111.

Pełny tekst źródła
Streszczenie:
Rho GTPases regulate the assembly of cellular actin structures and are activated by GEFs (guanine-nucleotide-exchange factors) and rendered inactive by GAPs (GTPase-activating proteins). Using the Rho GTPases Cdc42, Rac1 and RhoA, and the GTPase-binding portions of the effector proteins p21-activated kinase and Rhophilin1, we have developed split luciferase assays for detecting both GEF and GAP regulation of these GTPases. The system relies on purifying split luciferase fusion proteins of the GTPases and effectors from bacteria, and our results show that the assays replicate GEF and GAP specificities at nanomolar concentrations for several previously characterized Rho family GEFs (Dbl, Vav2, Trio and Asef) and GAPs [p190, Cdc42 GAP and PTPL1-associated RhoGAP]. The assay detected activities associated with purified recombinant GEFs and GAPs, cell lysates expressing exogenous proteins, and immunoprecipitates of endogenous Vav1 and p190. The results demonstrate that the split luciferase system provides an effective sensitive alternative to radioactivity-based assays for detecting GTPase regulatory protein activities and is adaptable to a variety of assay conditions.
Style APA, Harvard, Vancouver, ISO itp.
21

Zhang, Lingye, Anni Zhou, Shengtao Zhu, Li Min, Si Liu, Peng Li i Shutian Zhang. "The role of GTPase-activating protein ARHGAP26 in human cancers". Molecular and Cellular Biochemistry 477, nr 1 (30.10.2021): 319–26. http://dx.doi.org/10.1007/s11010-021-04274-3.

Pełny tekst źródła
Streszczenie:
AbstractRho GTPases are molecular switches that play an important role in regulating the behavior of a variety of tumor cells. RhoA GTPase-activating protein 26 (ARHGAP26) is a GTPase-activating protein and inhibits the activity of Rho GTPases by promoting the hydrolytic ability of Rho GTPases. It also affects tumorigenesis and progression of various tumors through several methods, including formation of abnormal fusion genes and circular RNA. This review summarizes the biological functions and molecular mechanisms of ARHGAP26 in different tumors, proposes the potential clinical value of ARHGAP26 in cancer treatment, and discusses current issues that need to be addressed.
Style APA, Harvard, Vancouver, ISO itp.
22

deCathelineau, Aimee M., i Gary M. Bokoch. "Inactivation of Rho GTPases by Statins Attenuates Anthrax Lethal Toxin Activity". Infection and Immunity 77, nr 1 (20.10.2008): 348–59. http://dx.doi.org/10.1128/iai.01005-08.

Pełny tekst źródła
Streszczenie:
ABSTRACT Anthrax lethal factor (LF), secreted by Bacillus anthracis, interacts with protective antigen to form a bipartite toxin (lethal toxin [LT]) that exerts pleiotropic biological effects resulting in subversion of the innate immune response. Although the mitogen-activated protein kinase kinases (MKKs) are the major intracellular protein targets of LF, the pathology induced by LT is not well understood. The statin family of HMG-coenzyme A reductase inhibitors have potent anti-inflammatory effects independent of their cholesterol-lowering properties, which have been attributed to modulation of Rho family GTPase activity. The Rho GTPases regulate vesicular trafficking, cytoskeletal dynamics, and cell survival and proliferation. We hypothesized that disruption of Rho GTPase function by statins might alter LT action. We show here that statins delay LT-induced death and MKK cleavage in RAW macrophages and that statin-mediated effects on LT action are attributable to disruption of Rho GTPases. The Rho GTPase-inactivating toxin, toxin B, did not significantly affect LT binding or internalization, suggesting that the Rho GTPases regulate trafficking and/or localization of LT once internalized. The use of drugs capable of inhibiting Rho GTPase activity, such as statins, may provide a means to attenuate intoxication during B. anthracis infection.
Style APA, Harvard, Vancouver, ISO itp.
23

Jung, Haiyoung, Suk Ran Yoon, Jeewon Lim, Hee Jun Cho i Hee Gu Lee. "Dysregulation of Rho GTPases in Human Cancers". Cancers 12, nr 5 (7.05.2020): 1179. http://dx.doi.org/10.3390/cancers12051179.

Pełny tekst źródła
Streszczenie:
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Style APA, Harvard, Vancouver, ISO itp.
24

Bokoch, Gary M., i Becky A. Diebold. "Current molecular models for NADPH oxidase regulation by Rac GTPase". Blood 100, nr 8 (15.10.2002): 2692–95. http://dx.doi.org/10.1182/blood-2002-04-1149.

Pełny tekst źródła
Streszczenie:
Reactive oxygen species (ROS) have been increasingly recognized as important components of cell signaling in addition to their well-established roles in host defense. The formation of ROS in phagocytic and nonphagocytic cells involves membrane-localized and Rac guanosine triphosphatase (GTPase)–regulated reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase(s). We discuss here the current molecular models for Rac GTPase action in the control of the phagocytic leukocyte NADPH oxidase. As a mechanistically detailed example of Rac GTPase signaling, the NADPH oxidase provides a potential paradigm for signaling by Rho family GTPases in general.
Style APA, Harvard, Vancouver, ISO itp.
25

Peurois, François, Gérald Peyroche i Jacqueline Cherfils. "Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization". Biochemical Society Transactions 47, nr 1 (17.12.2018): 13–22. http://dx.doi.org/10.1042/bst20170525.

Pełny tekst źródła
Streszczenie:
AbstractSmall GTPases regulate many aspects of cell logistics by alternating between an inactive, GDP-bound form and an active, GTP-bound form. This nucleotide switch is coupled to a cytosol/membrane cycle, such that GTP-bound small GTPases carry out their functions at the periphery of endomembranes. A global understanding of the molecular determinants of the interaction of small GTPases with membranes and of the resulting supramolecular organization is beginning to emerge from studies of model systems. Recent studies highlighted that small GTPases establish multiple interactions with membranes involving their lipid anchor, their lipididated hypervariable region and elements in their GTPase domain, which combine to determine the strength, specificity and orientation of their association with lipids. Thereby, membrane association potentiates small GTPase interactions with GEFs, GAPs and effectors through colocalization and positional matching. Furthermore, it leads to small GTPase nanoclustering and to lipid demixing, which drives the assembly of molecular platforms in which proteins and lipids co-operate in producing high-fidelity signals through feedback and feedforward loops. Although still fragmentary, these observations point to an integrated model of signaling by membrane-attached small GTPases that involves a diversity of direct and indirect interactions, which can inspire new therapeutic strategies to block their activities in diseases.
Style APA, Harvard, Vancouver, ISO itp.
26

Shah, Bhavin, i Andreas W. Püschel. "Regulation of Rap GTPases in mammalian neurons". Biological Chemistry 397, nr 10 (1.10.2016): 1055–69. http://dx.doi.org/10.1515/hsz-2016-0165.

Pełny tekst źródła
Streszczenie:
Abstract Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Style APA, Harvard, Vancouver, ISO itp.
27

Voena i Chiarle. "RHO Family GTPases in the Biology of Lymphoma". Cells 8, nr 7 (26.06.2019): 646. http://dx.doi.org/10.3390/cells8070646.

Pełny tekst źródła
Streszczenie:
RHO GTPases are a class of small molecules involved in the regulation of several cellular processes that belong to the RAS GTPase superfamily. The RHO family of GTPases includes several members that are further divided into two different groups: typical and atypical. Both typical and atypical RHO GTPases are critical transducers of intracellular signaling and have been linked to human cancer. Significantly, both gain-of-function and loss-of-function mutations have been described in human tumors with contradicting roles depending on the cell context. The RAS family of GTPases that also belong to the RAS GTPase superfamily like the RHO GTPases, includes arguably the most frequently mutated genes in human cancers (K-RAS, N-RAS, and H-RAS) but has been extensively described elsewhere. This review focuses on the role of RHO family GTPases in human lymphoma initiation and progression.
Style APA, Harvard, Vancouver, ISO itp.
28

Zhang, Zheng, Ming Liu i Yi Zheng. "Role of Rho GTPases in stem cell regulation". Biochemical Society Transactions 49, nr 6 (2.12.2021): 2941–55. http://dx.doi.org/10.1042/bst20211071.

Pełny tekst źródła
Streszczenie:
The future of regenerative medicine relies on our understanding of stem cells which are essential for tissue/organ generation and regeneration to maintain and/or restore tissue homeostasis. Rho family GTPases are known regulators of a wide variety of cellular processes related to cytoskeletal dynamics, polarity and gene transcription. In the last decade, major new advances have been made in understanding the regulatory role and mechanism of Rho GTPases in self-renewal, differentiation, migration, and lineage specification in tissue-specific signaling mechanisms in various stem cell types to regulate embryonic development, adult tissue homeostasis, and tissue regeneration upon stress or damage. Importantly, implication of Rho GTPases and their upstream regulators or downstream effectors in the transformation, migration, invasion and tumorigenesis of diverse cancer stem cells highlights the potential of Rho GTPase targeting in cancer therapy. In this review, we discuss recent evidence of Rho GTPase signaling in the regulation of embryonic stem cells, multiple somatic stem cells, and cancer stem cells. We propose promising areas where Rho GTPase pathways may serve as useful targets for stem cell manipulation and related future therapies.
Style APA, Harvard, Vancouver, ISO itp.
29

Pai, Sung-Yun, Chaekyun Kim i David A. Williams. "Rac GTPases in Human Diseases". Disease Markers 29, nr 3-4 (2010): 177–87. http://dx.doi.org/10.1155/2010/380291.

Pełny tekst źródła
Streszczenie:
Rho GTPases are members of the Ras superfamily of GTPases that regulate a wide variety of cellular functions. While Rho GTPase pathways have been implicated in various pathological conditions in humans, to date coding mutations in only the hematopoietic specific GTPase,RAC2, have been found to cause a human disease, a severe phagocytic immunodeficiency characterized by life-threatening infections in infancy. Interestingly, the phenotype was predicted by a mouse knock-out ofRAC2and resembles leukocyte adhesion deficiency (LAD). Here we review Rho GTPases with a specific focus on Rac GTPases. In particular, we discuss a new understanding of the unique and overlapping roles of Rac2 in blood cells that has developed since the generation of mice deficient in Rac1, Rac2 and Rac3 proteins. We propose that Rac2 mutations leading to disease be termed LAD type IV.
Style APA, Harvard, Vancouver, ISO itp.
30

Dipankar, Pankaj, Puneet Kumar, Shiba Prasad Dash i Pranita P. Sarangi. "Functional and Therapeutic Relevance of Rho GTPases in Innate Immune Cell Migration and Function during Inflammation: An In Silico Perspective". Mediators of Inflammation 2021 (13.02.2021): 1–10. http://dx.doi.org/10.1155/2021/6655412.

Pełny tekst źródła
Streszczenie:
Systematic regulation of leukocyte migration to the site of infection is a vital step during immunological responses. Improper migration and localization of immune cells could be associated with disease pathology as seen in systemic inflammation. Rho GTPases act as molecular switches during inflammatory cell migration by cycling between Rho-GDP (inactive) to Rho-GTP (active) forms and play an essential role in the precise regulation of actin cytoskeletal dynamics as well as other immunological functions of leukocytes. Available reports suggest that the dysregulation of Rho GTPase signaling is associated with various inflammatory diseases ranging from mild to life-threatening conditions. Therefore, it is crucial to understand the step-by-step activation and inactivation of GTPases and the functioning of different Guanine Nucleotide Exchange Factors (GEFs) and GTPase-Activating Proteins (GAPs) that regulate the conversion of GDP to GTP and GTP to GDP exchange reactions, respectively. Here, we describe the molecular organization and activation of various domains of crucial elements associated with the activation of Rho GTPases using solved PDB structures. We will also present the latest evidence available on the relevance of Rho GTPases in the migration and function of innate immune cells during inflammation. This knowledge will help scientists design promising drug candidates against the Rho-GTPase-centric regulatory molecules regulating inflammatory cell migration.
Style APA, Harvard, Vancouver, ISO itp.
31

Voss, Stephanie, Dennis M. Krüger, Oliver Koch i Yao-Wen Wu. "Spatiotemporal imaging of small GTPases activity in live cells". Proceedings of the National Academy of Sciences 113, nr 50 (29.11.2016): 14348–53. http://dx.doi.org/10.1073/pnas.1613999113.

Pełny tekst źródła
Streszczenie:
Ras-like small GTPases function as molecular switches and regulate diverse cellular events. To examine the dynamics of signaling requires spatiotemporal visualization of their activity in the cell. Current small GTPase sensors rely on specific effector domains that are available for only a small number of GTPases and compete for endogenous regulator/effector binding. Here, we describe versatile conformational sensors for GTPase activity (COSGAs) based on the conserved GTPase fold. Conformational changes upon GDP/GTP exchange were directly observed in solution, on beads, and in live cells by Förster resonance energy transfer (FRET). The COSGAs allow for monitoring of Rab1 and K-Ras activity in live cells using fluorescence lifetime imaging microscopy. We found that Rab1 is largely active in the cytoplasm and inactive at the Golgi, suggesting that the Golgi serves as the terminal of the Rab1 functional cycle. K-Ras displays polarized activity at the plasma membrane, with less activity at the edge of the cell and membrane ruffles.
Style APA, Harvard, Vancouver, ISO itp.
32

Dandamudi, Akhila, Huzoor Akbar, Jose Cancelas i Yi Zheng. "Rho GTPase Signaling in Platelet Regulation and Implication for Antiplatelet Therapies". International Journal of Molecular Sciences 24, nr 3 (28.01.2023): 2519. http://dx.doi.org/10.3390/ijms24032519.

Pełny tekst źródła
Streszczenie:
Platelets play a vital role in regulating hemostasis and thrombosis. Rho GTPases are well known as molecular switches that control various cellular functions via a balanced GTP-binding/GTP-hydrolysis cycle and signaling cascade through downstream effectors. In platelets, Rho GTPases function as critical regulators by mediating signal transduction that drives platelet activation and aggregation. Mostly by gene targeting and pharmacological inhibition approaches, Rho GTPase family members RhoA, Rac1, and Cdc42 have been shown to be indispensable in regulating the actin cytoskeleton dynamics in platelets, affecting platelet shape change, spreading, secretion, and aggregation, leading to thrombus formation. Additionally, studies of Rho GTPase function using platelets as a non-transformed model due to their anucleated nature have revealed valuable information on cell signaling principles. This review provides an updated summary of recent advances in Rho GTPase signaling in platelet regulation. We also highlight pharmacological approaches that effectively inhibited platelet activation to explore their possible development into future antiplatelet therapies.
Style APA, Harvard, Vancouver, ISO itp.
33

Schöpel, Miriam, Veena Nambiar Potheraveedu, Thuraya Al-Harthy, Raid Abdel-Jalil, Rolf Heumann i Raphael Stoll. "The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function". Biological Chemistry 398, nr 5-6 (1.05.2017): 577–88. http://dx.doi.org/10.1515/hsz-2016-0276.

Pełny tekst źródła
Streszczenie:
Abstract Ras GTPases are key players in cellular signalling because they act as binary switches. These states manifest through toggling between an active (GTP-loaded) and an inactive (GDP-loaded) form. The hydrolysis and replenishing of GTP is controlled by two additional protein classes: GAP (GTPase-activating)- and GEF (Guanine nucleotide exchange factors)-proteins. The complex interplay of the proteins is known as the GTPase-cycle. Several point mutations of the Ras protein deregulate this cycle. Mutations in Ras are associated with up to one-third of human cancers. The three isoforms of Ras (H, N, K) exhibit high sequence similarity and mainly differ in a region called HVR (hypervariable region). The HVR governs the differential action and cellular distribution of the three isoforms. Rheb is a Ras-like GTPase that is conserved from yeast to mammals. Rheb is mainly involved in activation of cell growth through stimulation of mTORC1 activity. In this review, we summarise multidimensional NMR studies on Rheb and Ras carried out to characterise their structure-function relationship and explain how the activity of these small GTPases can be modulated by low molecular weight compounds. These might help to design GTPase-selective antagonists for treatment of cancer and brain disease.
Style APA, Harvard, Vancouver, ISO itp.
34

Chatterjee, Moumita, Linda Sequeira, Mashariki Jenkins-Kabaila, Cara W. Dubyk, Surabhi Pathak i Kenneth L. van Golen. "Individual Rac GTPases Mediate Aspects of Prostate Cancer Cell and Bone Marrow Endothelial Cell Interactions". Journal of Signal Transduction 2011 (27.06.2011): 1–13. http://dx.doi.org/10.1155/2011/541851.

Pełny tekst źródła
Streszczenie:
The Rho GTPases organize the actin cytoskeleton and are involved in cancer metastasis. Previously, we demonstrated that RhoC GTPase was required for PC-3 prostate cancer cell invasion. Targeted down-regulation of RhoC led to sustained activation of Rac1 GTPase and morphological, molecular and phenotypic changes reminiscent of epithelial to mesenchymal transition. We also reported that Rac1 is required for PC-3 cell diapedesis across a bone marrow endothelial cell layer. In the current study, we queried whether Rac3 and RhoG GTPases also have a role in prostate tumor cell diapedesis. Using specific siRNAs we demonstrate roles for each protein in PC-3 and C4-2 cell adhesion and diapedesis. We have shown that the chemokine CCL2 induces tumor cell diapedesis via Rac1 activation. Here we find that RhoG partially contributes to CCL2-induced tumor cell diapedesis. We also find that Rac1 GTPase mediates tight binding of prostate cancer cells to bone marrow endothelial cells and promotes retraction of endothelial cells required for tumor cell diapedesis. Finally, Rac1 leads to β1 integrin activation, suggesting a mechanism that Rac1 can mediate tight binding with endothelial cells. Together, our data suggest that Rac1 GTPase is key mediator of prostate cancer cell-bone marrow endothelial cell interactions.
Style APA, Harvard, Vancouver, ISO itp.
35

Smith, Matthew D., Andreas Hiltbrunner, Felix Kessler i Danny J. Schnell. "The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP". Journal of Cell Biology 159, nr 5 (9.12.2002): 833–43. http://dx.doi.org/10.1083/jcb.200208017.

Pełny tekst źródła
Streszczenie:
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.
Style APA, Harvard, Vancouver, ISO itp.
36

Somsel Rodman, J., i A. Wandinger-Ness. "Rab GTPases coordinate endocytosis". Journal of Cell Science 113, nr 2 (15.01.2000): 183–92. http://dx.doi.org/10.1242/jcs.113.2.183.

Pełny tekst źródła
Streszczenie:
Endocytosis is characterized by vesicular transport along numerous pathways. Common steps in each pathway include membrane budding to form vesicles, transport to a particular destination, and ultimately docking and fusion with the target membrane. Specificity of vesicle targeting is rendered in part by associated Rab GTPases. This review summarizes current knowledge about Rab GTPase functions in the endocytic pathways and provides insight into the regulation of Rab GTPase activity and mechanisms of Rab protein function. Functional assays have identified some Rab proteins that operate on individual pathways, but Rab proteins in several pathways remain controversial or have not been identified. Control of Rab GTPase activity is exerted through multiple levels of regulation. Significant new information pertaining to Rab protein function in regulating transport has emerged. Remarkably, Rab5 GTPase links budding, cytoskeletal transport and docking/fusion activities. This paradigm will most likely be generally applicable to other Rab GTPase pathways. Together with the cross-talk between different Rab proteins and their effectors, this may provide an integrated system for the general coordination of endocytic pathways to maintain organelle homeostasis.
Style APA, Harvard, Vancouver, ISO itp.
37

Raghavan, Somasundaram, Masuma Akter Brishti i M. Dennis Leo. "Rab GTPases as Modulators of Vascular Function". Cells 11, nr 19 (29.09.2022): 3061. http://dx.doi.org/10.3390/cells11193061.

Pełny tekst źródła
Streszczenie:
Rab GTPases, the largest family of small GTPases, are ubiquitously expressed proteins that control various aspects of cellular function, from cell survival to exocytosis. Rabs cycle between the GDP-bound inactive form and the GTP-bound active form. When activated, specific Rab GTPase-positive vesicles mediate cellular networks involved in intracellular trafficking, recycling, and/or exocytosis of cargo proteins. Dysfunctional Rab signaling pathways have been implicated in various disease processes. The precise cellular functions of several members of the Rab GTPase family are still unknown. A lack of pharmacological tools and the lethality of gene knockouts have made more detailed characterizations of their protein interaction networks difficult. Nevertheless, available evidence suggests that these proteins are vital for normal cell function. Endothelial and smooth muscle cells control vascular lumen diameter and modulate blood flow. Endothelial cells also secrete several pro- and antithrombotic factors and vasoactive substances to coordinate local inflammatory responses and angiogenesis. Rab GTPase function in endothelial cells has been relatively well-explored, while only a handful of reports are available on these proteins in vascular smooth muscle. This review summarizes the present knowledge on Rab GTPases in the vasculature.
Style APA, Harvard, Vancouver, ISO itp.
38

Mosaddeghzadeh, Niloufar, i Mohammad Reza Ahmadian. "The RHO Family GTPases: Mechanisms of Regulation and Signaling". Cells 10, nr 7 (20.07.2021): 1831. http://dx.doi.org/10.3390/cells10071831.

Pełny tekst źródła
Streszczenie:
Much progress has been made toward deciphering Rho GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through Rho GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Style APA, Harvard, Vancouver, ISO itp.
39

Bruewer, Matthias, Ann M. Hopkins, Michael E. Hobert, Asma Nusrat i James L. Madara. "RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin". American Journal of Physiology-Cell Physiology 287, nr 2 (sierpień 2004): C327—C335. http://dx.doi.org/10.1152/ajpcell.00087.2004.

Pełny tekst źródła
Streszczenie:
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity.
Style APA, Harvard, Vancouver, ISO itp.
40

Peterson, J., Y. Zheng, L. Bender, A. Myers, R. Cerione i A. Bender. "Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast." Journal of Cell Biology 127, nr 5 (1.12.1994): 1395–406. http://dx.doi.org/10.1083/jcb.127.5.1395.

Pełny tekst źródła
Streszczenie:
The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.
Style APA, Harvard, Vancouver, ISO itp.
41

Fusco, Ludovico, Riwal Lefort, Kevin Smith, Fethallah Benmansour, German Gonzalez, Caterina Barillari, Bernd Rinn, Francois Fleuret, Pascal Fua i Olivier Pertz. "Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling". Journal of Cell Biology 212, nr 1 (4.01.2016): 91–111. http://dx.doi.org/10.1083/jcb.201506018.

Pełny tekst źródła
Streszczenie:
Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.
Style APA, Harvard, Vancouver, ISO itp.
42

Varlakhanova, Natalia V., Frances J. D. Alvarez, Tyler M. Brady, Bryan A. Tornabene, Christopher J. Hosford, Joshua S. Chappie, Peijun Zhang i Marijn G. J. Ford. "Structures of the fungal dynamin-related protein Vps1 reveal a unique, open helical architecture". Journal of Cell Biology 217, nr 10 (7.08.2018): 3608–24. http://dx.doi.org/10.1083/jcb.201712021.

Pełny tekst źródła
Streszczenie:
Dynamin-related proteins (DRPs) are large multidomain GTPases required for diverse membrane-remodeling events. DRPs self-assemble into helical structures, but how these structures are tailored to their cellular targets remains unclear. We demonstrate that the fungal DRP Vps1 primarily localizes to and functions at the endosomal compartment. We present crystal structures of a Vps1 GTPase–bundle signaling element (BSE) fusion in different nucleotide states to capture GTP hydrolysis intermediates and concomitant conformational changes. Using cryoEM, we determined the structure of full-length GMPPCP-bound Vps1. The Vps1 helix is more open and flexible than that of dynamin. This is due to further opening of the BSEs away from the GTPase domains. A novel interface between adjacent GTPase domains forms in Vps1 instead of the contacts between the BSE and adjacent stalks and GTPase domains as seen in dynamin. Disruption of this interface abolishes Vps1 function in vivo. Hence, Vps1 exhibits a unique helical architecture, highlighting structural flexibilities of DRP self-assembly.
Style APA, Harvard, Vancouver, ISO itp.
43

Amemiya, Yuna, Nao Nakamura, Nao Ikeda, Risa Sugiyama, Chiaki Ishii, Masatoshi Maki, Hideki Shibata i Terunao Takahara. "Amino Acid-Mediated Intracellular Ca2+ Rise Modulates mTORC1 by Regulating the TSC2-Rheb Axis through Ca2+/Calmodulin". International Journal of Molecular Sciences 22, nr 13 (27.06.2021): 6897. http://dx.doi.org/10.3390/ijms22136897.

Pełny tekst źródła
Streszczenie:
Mechanistic target of rapamycin complex 1 (mTORC1) is a master growth regulator by controlling protein synthesis and autophagy in response to environmental cues. Amino acids, especially leucine and arginine, are known to be important activators of mTORC1 and to promote lysosomal translocation of mTORC1, where mTORC1 is thought to make contact with its activator Rheb GTPase. Although amino acids are believed to exclusively regulate lysosomal translocation of mTORC1 by Rag GTPases, how amino acids increase mTORC1 activity besides regulation of mTORC1 subcellular localization remains largely unclear. Here we report that amino acids also converge on regulation of the TSC2-Rheb GTPase axis via Ca2+/calmodulin (CaM). We showed that the amino acid-mediated increase of intracellular Ca2+ is important for mTORC1 activation and thereby contributes to the promotion of nascent protein synthesis. We found that Ca2+/CaM interacted with TSC2 at its GTPase activating protein (GAP) domain and that a CaM inhibitor reduced binding of CaM with TSC2. The inhibitory effect of a CaM inhibitor on mTORC1 activity was prevented by loss of TSC2 or by an active mutant of Rheb GTPase, suggesting that a CaM inhibitor acts through the TSC2-Rheb axis to inhibit mTORC1 activity. Taken together, in response to amino acids, Ca2+/CaM-mediated regulation of the TSC2-Rheb axis contributes to proper mTORC1 activation, in addition to the well-known lysosomal translocation of mTORC1 by Rag GTPases.
Style APA, Harvard, Vancouver, ISO itp.
44

Xia, Chunzhi, Wenbin Ma, Lewis Joe Stafford, Chengyu Liu, Liming Gong, James F. Martin i Mingyao Liu. "GGAPs, a New Family of Bifunctional GTP-Binding and GTPase-Activating Proteins". Molecular and Cellular Biology 23, nr 7 (1.04.2003): 2476–88. http://dx.doi.org/10.1128/mcb.23.7.2476-2488.2003.

Pełny tekst źródła
Streszczenie:
ABSTRACT G proteins are molecular switches that control a wide variety of physiological functions, including neurotransmission, transcriptional activation, cell migration, cell growth. and proliferation. The ability of GTPases to participate in signaling events is determined by the ratio of GTP-bound to GDP-bound forms in the cell. All known GTPases exist in an inactive (GDP-bound) and an active (GTP-bound) conformation, which are catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs), respectively. In this study, we identified and characterized a new family of bifunctional GTP-binding and GTPase-activating proteins, named GGAP. GGAPs contain an N-terminal Ras homology domain, called the G domain, followed by a pleckstrin homology (PH) domain, a C-terminal GAP domain, and a tandem ankyrin (ANK) repeat domain. Expression analysis indicates that this new family of proteins has distinct cell localization, tissue distribution, and even message sizes. GTPase assays demonstrate that GGAPs have high GTPase activity through direct intramolecular interaction of the N-terminal G domain and the C-terminal GAP domain. In the absence of the GAP domain, the N-terminal G domain has very low activity, suggesting a new model of GGAP protein regulation via intramolecular interaction like the multidomain protein kinases. Overexpression of GGAPs leads to changes in cell morphology and activation of gene transcription.
Style APA, Harvard, Vancouver, ISO itp.
45

Peters, Daniel, Laura Kay, Jeyanthy Eswaran, Jeremy Lakey i Meera Soundararajan. "Human Miro Proteins Act as NTP Hydrolases through a Novel, Non-Canonical Catalytic Mechanism". International Journal of Molecular Sciences 19, nr 12 (2.12.2018): 3839. http://dx.doi.org/10.3390/ijms19123839.

Pełny tekst źródła
Streszczenie:
Mitochondria are highly dynamic organelles that play a central role in multiple cellular processes, including energy metabolism, calcium homeostasis and apoptosis. Miro proteins (Miros) are “atypical” Ras superfamily GTPases that display unique domain architecture and subcellular localisation regulating mitochondrial transport, autophagy and calcium sensing. Here, we present systematic catalytic domain characterisation and structural analyses of human Miros. Despite lacking key conserved catalytic residues (equivalent to Ras Y32, T35, G60 and Q61), the Miro N-terminal GTPase domains display GTPase activity. Surprisingly, the C-terminal GTPase domains previously assumed to be “relic” domains were also active. Moreover, Miros show substrate promiscuity and function as NTPases. Molecular docking and structural analyses of Miros revealed unusual features in the Switch I and II regions, facilitating promiscuous substrate binding and suggesting the usage of a novel hydrolytic mechanism. The key substitution in position 13 in the Miros leads us to suggest the existence of an “internal arginine finger”, allowing an unusual catalytic mechanism that does not require GAP protein. Together, the data presented here indicate novel catalytic functions of human Miro atypical GTPases through altered catalytic mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
46

Rodríguez-Fdez, Sonia, i Xosé R. Bustelo. "Rho GTPases in Skeletal Muscle Development and Homeostasis". Cells 10, nr 11 (2.11.2021): 2984. http://dx.doi.org/10.3390/cells10112984.

Pełny tekst źródła
Streszczenie:
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Style APA, Harvard, Vancouver, ISO itp.
47

Elvers, Margitta. "RhoGAPs und Rho-GTPasen in Thrombozyten". Hämostaseologie 36, nr 03 (2016): 168–77. http://dx.doi.org/10.5482/hamo-14-09-0046.

Pełny tekst źródła
Streszczenie:
ZusammenfassungDie Reorganisation des Zytoskeletts in Thrombozyten ist essenziell für die Thrombozytenadhäsion und Thrombusbildung in Hämostase und Thrombose. Die Rho-GTPasen RhoA, Rac1 und Cdc42 spielen eine entscheidende Rolle bei der Reorganisation des Zytoskeletts, indem sie die Bildung von Filopodien und Lamellipodien induzieren und somit für die Oberflächenvergrößerung der Thrombozyten wäh-rend der Aktivierung verantwortlich sind. Rho-GTPasen beeinflussen zudem die Prozesse der Thrombozytenaktivität und Aggregatbildung durch Modulation der Sekretion, Integrinaktivierung und arteriellen Thrombusbildung. Die Aktivität der Rho-GTPasen wird von verschiedenen Proteinen kontrolliert, z. B. den GTPase aktivierenden Proteinen (GTPase activating proteins, GAPs). GAPs lösen die Inaktivierung des Guaninnukleotidbindenden Proteins durch Stimulierung der GTPase-Aktivität aus. Die Rolle und Bedeutung von GAPs in Thrombozyten ist nur wenig verstanden und viele der bekannten Rho-GAPs sind bisher nicht in Thrombozyten identifiziert oder hinsichtlich ihrer Funktion charakterisiert worden. Die kürzlich entdeckten RhoGAPs Oligophrenin1 (OPHN1) und Nadrin regulieren die Aktivität von RhoA, Rac1 und Cdc42 und nachfolgend die Reorganisation des Zytoskeletts und die Aktivierung von Thrombozyten sowie die Thrombusbildung. In den letzten Jahren trug die Analyse gene-tisch-modifizierter Mäuse dazu bei, grundlegende Erkenntnisse zur Bedeutung von RhoGTPasen und ihren Regulatoren für die Reorganisation des Zytoskeletts und andere Rhovermittelte zelluläre Prozesse in Thrombozyten zu gewinnen.
Style APA, Harvard, Vancouver, ISO itp.
48

Héraud, Pinault, Lagrée i Moreau. "p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease". Cells 8, nr 4 (12.04.2019): 351. http://dx.doi.org/10.3390/cells8040351.

Pełny tekst źródła
Streszczenie:
Small guanosine triphosphatases (GTPases) gathered in the Rat sarcoma (Ras) superfamily represent a large family of proteins involved in several key cellular mechanisms. Within the Ras superfamily, the Ras homolog (Rho) family is specialized in the regulation of actin cytoskeleton-based mechanisms. These proteins switch between an active and an inactive state, resulting in subsequent inhibiting or activating downstream signals, leading finally to regulation of actin-based processes. The On/Off status of Rho GTPases implicates two subsets of regulators: GEFs (guanine nucleotide exchange factors), which favor the active GTP (guanosine triphosphate) status of the GTPase and GAPs (GTPase activating proteins), which inhibit the GTPase by enhancing the GTP hydrolysis. In humans, the 20 identified Rho GTPases are regulated by over 70 GAP proteins suggesting a complex, but well-defined, spatio-temporal implication of these GAPs. Among the quite large number of RhoGAPs, we focus on p190RhoGAP, which is known as the main negative regulator of RhoA, but not exclusively. Two isoforms, p190A and p190B, are encoded by ARHGAP35 and ARHGAP5 genes, respectively. We describe here the function of each of these isoforms in physiological processes and sum up findings on their role in pathological conditions such as neurological disorders and cancers.
Style APA, Harvard, Vancouver, ISO itp.
49

Reichman, Melvin, Amanda Schabdach, Meera Kumar, Tom Zielinski, Preston S. Donover, Lisa D. Laury-Kleintop i Robert G. Lowery. "A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay". Journal of Biomolecular Screening 20, nr 10 (20.07.2015): 1294–99. http://dx.doi.org/10.1177/1087057115596326.

Pełny tekst źródła
Streszczenie:
Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl’s big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs.
Style APA, Harvard, Vancouver, ISO itp.
50

Lawson, Campbell D., i Anne J. Ridley. "Rho GTPase signaling complexes in cell migration and invasion". Journal of Cell Biology 217, nr 2 (12.12.2017): 447–57. http://dx.doi.org/10.1083/jcb.201612069.

Pełny tekst źródła
Streszczenie:
Cell migration is dependent on the dynamic formation and disassembly of actin filament–based structures, including lamellipodia, filopodia, invadopodia, and membrane blebs, as well as on cell–cell and cell–extracellular matrix adhesions. These processes all involve Rho family small guanosine triphosphatases (GTPases), which are regulated by the opposing actions of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPase activity needs to be precisely tuned at distinct cellular locations to enable cells to move in response to different environments and stimuli. In this review, we focus on the ability of RhoGEFs and RhoGAPs to form complexes with diverse binding partners, and describe how this influences their ability to control localized GTPase activity in the context of migration and invasion.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii