Gotowa bibliografia na temat „Growth of Microbe”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Growth of Microbe”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Growth of Microbe"
Oyatokun, O. S., F. O. Oyelakin, W. B. Akanbi, M. A. Adigun i S. T. Ajiwe. "Influence of Rhizobium and Virus Inocula on Growth and Yields of Cowpea: A Mini-review". Asian Research Journal of Agriculture 16, nr 2 (10.05.2023): 1–7. http://dx.doi.org/10.9734/arja/2023/v16i2382.
Pełny tekst źródłaBreakfield, Natalie W., Dayna Collett i Michael E. Frodyma. "Plant growth-promoting microbes — an industry view". Emerging Topics in Life Sciences 5, nr 2 (18.02.2021): 317–24. http://dx.doi.org/10.1042/etls20200313.
Pełny tekst źródłaDharampal, Prarthana S., Caitlin Carlson, Cameron R. Currie i Shawn A. Steffan. "Pollen-borne microbes shape bee fitness". Proceedings of the Royal Society B: Biological Sciences 286, nr 1904 (12.06.2019): 20182894. http://dx.doi.org/10.1098/rspb.2018.2894.
Pełny tekst źródłaIqbal, Saima, Muhammad Aamir Iqbal, Chunjia Li, Asif Iqbal i Rana Nadeem Abbas. "Overviewing Drought and Heat Stress Amelioration—From Plant Responses to Microbe-Mediated Mitigation". Sustainability 15, nr 2 (15.01.2023): 1671. http://dx.doi.org/10.3390/su15021671.
Pełny tekst źródłaBetty Natalie Fitriatin, Reginawanti Hindersah, Mieke Rochimi Setiawati i Rara Rahmatika Risanti. "Influence of biofertilizers application to improve growth and yield of celery in Andisols". International Journal of Frontiers in Life Science Research 3, nr 1 (30.08.2022): 017–21. http://dx.doi.org/10.53294/ijflsr.2022.3.1.0052.
Pełny tekst źródłaDu, Zhe Hua, i Xin Lin. "Research on Characteristics of Microbe Spatiotemporal Distribution in Indoor Air". Advanced Materials Research 955-959 (czerwiec 2014): 253–56. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.253.
Pełny tekst źródłaShaffique, Shifa, Muhammad Aaqil Khan, Shabir Hussain Wani, Anjali Pande, Muhammad Imran, Sang-Mo Kang, Waqas Rahim i in. "A Review on the Role of Endophytes and Plant Growth Promoting Rhizobacteria in Mitigating Heat Stress in Plants". Microorganisms 10, nr 7 (24.06.2022): 1286. http://dx.doi.org/10.3390/microorganisms10071286.
Pełny tekst źródłaSharma, Minaxi, Surya Sudheer, Zeba Usmani, Rupa Rani i Pratishtha Gupta. "Deciphering the Omics of Plant-Microbe Interaction: Perspectives and New Insights". Current Genomics 21, nr 5 (4.09.2020): 343–62. http://dx.doi.org/10.2174/1389202921999200515140420.
Pełny tekst źródłaVaughan, Adam. "Soil microbe transplants could boost tree growth". New Scientist 250, nr 3337 (czerwiec 2021): 17. http://dx.doi.org/10.1016/s0262-4079(21)00947-7.
Pełny tekst źródłaSebayang, N. U. W., T. Sabrina i R. M. Sari. "Analysis the nutrient of bio-vermicompost with different techniques applications of some microbes and earthworms". IOP Conference Series: Earth and Environmental Science 1059, nr 1 (1.07.2022): 012024. http://dx.doi.org/10.1088/1755-1315/1059/1/012024.
Pełny tekst źródłaRozprawy doktorskie na temat "Growth of Microbe"
Nolan, Nicole E. "Activated Carbon Decreases Invasive Plant Growth by Mediating Plant-Microbe Interactions". DigitalCommons@USU, 2014. https://digitalcommons.usu.edu/etd/4250.
Pełny tekst źródłaWan, Hon Chi Judy. "Interaction of earthworms and microorganisms on nutrient availability and crop growth". HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/588.
Pełny tekst źródłaÅrling, Oscar. "Construction, programming and testing of measurement equipment for microbe culturing in space : Contribution to the MOREBAC experiment, part of the MIST-project". Thesis, Uppsala universitet, Mikrosystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316745.
Pełny tekst źródłaMOREBAC
MIST
Maraist, Caitlin Ann. "Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus". PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4353.
Pełny tekst źródłaKhan, Wajahatullah. "Signal compounds involved with plant perception and response to microbes alter plant physiological activities and growth of crop plants". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82900.
Pełny tekst źródłaEck, Jenalle L. "Variation in Tropical Tree Seedling Survival, Growth, and Colonization by Arbuscular Mycorrhizal Fungi near Conspecific Adults: Field and Shadehouse Experiments in Panama". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503242529467534.
Pełny tekst źródłaDesrut, Antoine. "Mécanismes moléculaires impliqués dans les interactions entre Arabidopsis thaliana et des rhizobactéries bénéfiques : Implication du transport de sucres ?" Thesis, Poitiers, 2019. http://theses.univ-poitiers.fr/63024/2019-Desrut-Antoine-These.
Pełny tekst źródłaPlants live in close relationships with complex populations of microorganisms, including rhizobacteria species commonly referred to as Plant Growth Promoting Rhizobacteria (PGPR). PGPR able to confer to plants an improved productivity but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well characterized PGPR strain Pseudomonas simiae WCS417r, we have carried out a comprehensive set of phenotypic, gene expression, and biochemical analyses. Our results show PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development and defense. Using a reverse genetic approach, we also demonstrate that AtSWEET11 and AtSWEET12, two sugar transporter genes whose expression is down-regulated by the PGPR, are functionally involved in its plant-growth promoting effects. Altogether, our findings reveal regulation of plant sugar transport plays a crucial role in determining the fate of plant-rhizobacteria interactions. We extended our study to two other PGPR and a non PGPR strain. Overall, our results show that all three bacterial strains tested are able to alter the expression of several plant sugar transporter genes (essentially genes of the AtSWEET and AtERD6-like families), either in roots or in shoot, and either in physical contact with the seedling roots or via the production of volatile compounds only. Altogether, our findings reveal conserved and strain-specific trancriptional regulation of sugar transport during plant-PGPR interactions. Lastly, we report the identification and characterization of a Bacillus megaterium endophytic strain, RmBm31, isolated from root nodules of the legume species Retama monosperma. Our study reveals RmBm31 is an IAA-producing endophytic bacterium that possess a large set of genes associated with plant growth promoting traits. Using the model plant species Arabidopsis, we demonstrate this strain display beneficial effects on plant growth and root development via the production of volatile compounds. These effects seem to involve auxin-independent signaling mechanisms
Liong, Rolan Yuk Loong. "BACTERIAL GROWTH ON METAL AND NON-METAL SURFACES IN A STATIC BIOREACTOR". DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/923.
Pełny tekst źródłaLantto, U. (Ulla). "Etiology and outcome of PFAPA (periodic fever, aphthous stomatitis, pharyngitis and adenitis) syndrome among patients operated with tonsillectomy in childhood". Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219677.
Pełny tekst źródłaTiivistelmä Periodic fever, aphthous stomatitis, pharyngitis, adenitis (PFAPA) syndrooma, on oireyhtymä, jossa potilaat kärsivät hyvin säännöllisesti ilmaantuvista, toistuvista kuumejaksoista, joiden välillä potilaat ovat terveitä. Klassisessa tautimuodossa kuumeilut alkavat lapsuudessa ennen viiden vuoden ikää ja kuumevaiheeseen liittyy liitännäisoireita: suun limakalvojen rakkuloita, nielutulehdusta ja/tai kaulan imusolmukkeiden suurentumista. Oireyhtymän syytä ei tiedetä, mutta nielurisaleikkaus (TE) on osoittautunut tehokkaaksi hoidoksi. Tutkimuksen tarkoituksena oli (1) arvioida PFAPA potilaiden vointia pitkäaikaisseurannassa TE:n jälkeen ja vertailla taudinkuvaa niiden PFAPA potilaiden välillä, joilla oli klassinen PFAPA tai epätyypillinen PFAPA. (2) Lisäksi tutkimme myös TE:lla hoidettujen PFAPA potilaiden sairastuvuutta, yleistä terveydentilaa ja kasvua vertaamalla näitä sukupuoli- ja ikävakioituihin kontrolleihin ja (3) selvitimme mikrobiologisia ja histologisia löydöksiä PFAPA potilaiden nielurisoissa verrattuna muista syistä TE:ssa käyneiden lasten nielurisoihin. Tässä noin yhdeksän vuoden seurannassa TE:n jälkeen oli täysin parantunut 97% (n = 56) potilaista, joilla oli klassinen PFAPA, ja kaikki (n = 50) potilaat, joilla oli epätyypillinen PFAPA (tauti oli alkanut viiden ikävuoden jälkeen ja/tai klassiset liitännäisoireet puuttuivat). Kuumeprofiilit eivät muilta osin eronneet ennen nielurisaleikkausta näissä ryhmissä. PFAPA potilaiden (n = 119) kasvu ja yleinen terveydentila eivät eronneet väestökontrolleista (n = 230). Krooniset ja autoimmuunisairaudet olivat yhtä harvinaisia molemmissa ryhmissä. Potilaat raportoivat sairastaneensa enemmän infektioita ja sammasta lapsuudessa ja heillä oli enemmän siitepölyallergioita. PFAPA potilaiden (n = 31) ja muista syistä TE:ssa käyneiden lasten (n = 24) nielurisojen mikrobiologiaa ja histologiaa tutkittiin ja vertailtiin. Biofilmimuodostusta nielurisan pinnalla ja Candida albicansia löytyi enemmän tapauksilta kuin kontrolleilta, kun taas Staphylococcus aureusta, varicella zoster- ja herpes simplex -viruksia tavattiin enemmän kontrolleilla. Myös mikrobiomi erosi ryhmien välillä, esimerkiksi syanobakteerit olivat yleisempiä PFAPA risoissa kuin kontrolleilla. Klassisten ja epätyypillisten PFAPA potilaiden terveydentila TE:n jälkeen oli pitkäaikaisseurannassamme erinomainen ja siksi ehdotamme, että PFAPA –syndrooman diagnostisia kriteereitä tulisi muuttaa. Nielurisojen mikrobisto on erilainen kontrolleihin verrattuna ja tällä voi olla merkitystä PFAPA syndrooman inflammatorisessa prosessissa
La, Angéla. "Process development for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO2 mitigation". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC031/document.
Pełny tekst źródłaYeast and microalgae are microorganisms widely studied for the production of high-value compounds used in food and energy area. This work proposes a process of mixed culture of Saccharomyces cerevisiae and Chlorella vulgaris for both growth and CO2 mitigation. The process relies on mutual symbiosis between the two organisms through gas exchange, which is possible by engineering the co-dominance of populations. The two populations must be balanced in such a way so that microalgae can cope with the rate of CO2 production by the yeast activity. The process is performed in non-aerated 5l-photo-bioreactor fitted with a fermentation lock to prevent gas exchange with the outside atmosphere. With this set-up, the CO2 is produced in dissolved form and is available to the microalgae avoiding degassing and dissolution phenomena. The two organism populations are balanced at approximately 20 millions cells per ml, 12% CO2 produced by yeast was reutilized by microalgae within 168 hours of culture. A yeast and microalgae growth model in mixed culture is developed by combining each individual growth model. The predictive yeast model considers the possible metabolic pathways involved in fermentation and respiration and imposes limitation factors on these pathways, in this manner, the model can predict the partition of these pathways. The microalgae individual model is based on the photosynthetic activity. The results of this work show the feasibility of such process and could provide a basis for the development of a green process of low environmental impact
Książki na temat "Growth of Microbe"
Martin, Francis, i Sophien Kamoun. Effectors in plant-microbe interactions. Chichester, West Sussex, UK: Wiley-Blackwell, 2012.
Znajdź pełny tekst źródłaPuente, Edgar Omar Rueda. Bacterias promotoras del crecimiento vegetal. Hermosillo, Sonora, México: Universidad de Sonora, 2009.
Znajdź pełny tekst źródłaGonzález, M. Belén Rodelas, i Jesús Gonzalez-López. Beneficial plant-microbial interactions: Ecology and applications. Boca Raton, FL: CRC Press, 2013.
Znajdź pełny tekst źródłaInternational Workshop on Plant Growth-Promoting Rhizobacteria (3rd 1994 Adelaide, S. Aust.). Improving plant productivity with rhizosphere bacteria: Proceedings of the Third International Workshop on Plant Growth-Promoting Rhizobacteria : Adelaide, South Australia, March 7-11, 1994. Glen Osmond, S. Aust: CSIRO, 1994.
Znajdź pełny tekst źródłaGermida, J. J. Growth and nutrition of wheat as affected by interactions between VA mycorrhizae and plant growth-promoting rhizobacteria (PGPR): Final report. [Regina, Sask.]: Saskatchewan Agriculture and Food, 1995.
Znajdź pełny tekst źródłaBacteria in agrobiology: Stress management. Heidelberg: Springer, 2012.
Znajdź pełny tekst źródłaBacteria in agrobiology: Plant nutrient management. Heidelberg: Springer, 2011.
Znajdź pełny tekst źródłaRawlings, Douglas E. Microbes, mining and the growth of knowledge. Cape Town: University of Cape Town, 1989.
Znajdź pełny tekst źródłaMohamed, Heba I., Hossam El-Din Saad El-Beltagi i Kamel A. Abd-Elsalam, red. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66587-6.
Pełny tekst źródłaFougias, Evaggelos G. Growth kinetics of filamentous microbes in relation to stable foam formation in activated sludge. Birmingham: University of Birmingham, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Growth of Microbe"
Saifulla, Muhammad, T. YellaGoud, S. V. Manjunatha, T. G. Manu i G. Rajesh. "Microbe-Assisted Plant Growth Ameliorations". W Plant Health Under Biotic Stress, 99–108. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6040-4_5.
Pełny tekst źródłaRoy, Tina, Nirmalendu Das i Sukanta Majumdar. "Pesticide Tolerant Rhizobacteria: Paradigm of Disease Management and Plant Growth Promotion". W Plant Microbe Symbiosis, 221–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36248-5_12.
Pełny tekst źródłaSuchitra, Rakesh, Kaushik Rajaram, Nagarathinam Arunkumar i D. Siva Sundara Kumar. "Contribution of Beneficial Fungi for Maintaining Sustainable Plant Growth and Soil Fertility". W Plant Microbe Symbiosis, 105–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36248-5_6.
Pełny tekst źródłaBakka, Kavya, i Dinakar Challabathula. "Amelioration of Salt Stress Tolerance in Plants by Plant Growth-Promoting Rhizobacteria: Insights from “Omics” Approaches". W Plant Microbe Symbiosis, 303–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36248-5_16.
Pełny tekst źródłaSelim, Sh M., i Mona S. Zayed. "Microbial Interactions and Plant Growth". W Plant-Microbe Interactions in Agro-Ecological Perspectives, 1–15. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5813-4_1.
Pełny tekst źródłaCarreño-López, R., J. M. Alatorre-Cruz i V. Marín-Cevada. "Pyrroloquinoline quinone (PQQ): Role in Plant-Microbe Interactions". W Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 169–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5862-3_9.
Pełny tekst źródłaGopalakrishnan, Subramaniam, i Vadlamudi Srinivas. "Management of Soil-Borne Diseases of Grain Legumes Through Broad-Spectrum Actinomycetes Having Plant Growth-Promoting and Biocontrol Traits". W Plant Microbe Interface, 129–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19831-2_5.
Pełny tekst źródłaSummuna, Baby, Sachin Gupta i Parveez Ahmed Sheikh. "Plant Growth and Health Promoting Plant-Microbe Interactions". W Plant Health Under Biotic Stress, 253–60. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6040-4_13.
Pełny tekst źródłaTester, C. F., P. D. Millner i D. Gerschefske Kitt. "A misting apparatus for studying plant-microbe interactions and nutrient utilization". W The Rhizosphere and Plant Growth, 380. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3336-4_90.
Pełny tekst źródłaPaulucci, N. S., G. González Anta, L. A. Gallarato, J. C. Vicario, A. B. Cesari, Y. B. Reguera, C. Kilmurray, M. A. Bueno, M. B. García i M. S. Dardanelli. "Plant–Microbe Partnerships: Implications for Growth and Plant Health". W Plant Microbe Symbiosis: Fundamentals and Advances, 105–17. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1287-4_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Growth of Microbe"
Kim, Raphael, Pat Pataranutaporn, Jack Forman, Seung Ah Lee, Ingmar H. Riedel-Kruse, Mirela Alistar, Eldy S. Lazaro Vasquez i in. "Microbe-HCI: Introduction and Directions for Growth". W CHI '21: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3411763.3450408.
Pełny tekst źródłaKhan, Hasnain Ahmad, Akpobari Gbosi, Larry N. Britton i Steven Lawrence Bryant. "Mechanistic Models of Microbe Growth in Heterogeneous Porous Media". W SPE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/113462-ms.
Pełny tekst źródłaZheng, B., C. S. Ih, C. M. Pleass i N. D. Dey. "Holographic microbes identification using dynamic speckle graphs". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thw6.
Pełny tekst źródłaChou, Fong-In, Chia-Chin Li, Tzung-Yuang Chen i Hsiao-Wei Wen. "Microbial Occurrence in Bentonite-Based Buffer Materials of a Final Disposal Site for Low Level Radioactive Waste in Taiwan". W ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40284.
Pełny tekst źródłaSharifullina, D. T., R. N. Nizamov, R. N. Nizamov, I. R. Yunusov i G. I. Rakhmatullina. "STUDYING THE POSSIBILITY OF JOINT CULTIVATION OF B.BIFIDUM AND E.COLI ON ADAPTED NUTRIENT MEDIA". W STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.2.423-426.
Pełny tekst źródłaMehdizadeh Allaf, Malihe, Zahra Habibi, Zahra Samadi, Christopher T. DeGroot, Lars Rehmann, John R. de Bruyn i Hassan Peerhossaini. "Physical and Rheological Properties of Active Fluids Under Shear Stress: Suspensions of Synechocystis". W ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20104.
Pełny tekst źródłaLouis, Godfrey, i A. Santhosh Kumar. "Growth characteristics of red rain microbes at temperatures below 100 °C". W SPIE Optical Engineering + Applications, redaktorzy Richard B. Hoover, Gilbert V. Levin, Alexei Y. Rozanov i Paul C. W. Davies. SPIE, 2010. http://dx.doi.org/10.1117/12.860807.
Pełny tekst źródłaLasmini, Sri Anjar, Idham, Salapu Pagiu, Ramal Yusuf, Nur Hayati, Mohammad Yunus, Flora Pasaru i in. "Application of mulch and soil microbes to increase growth and yield of chili pepper". W THE FIRST INTERNATIONAL CONFERENCE ON NEUROSCIENCE AND LEARNING TECHNOLOGY (ICONSATIN 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0118514.
Pełny tekst źródłaOliveira, Joao W. L., Andre L. F. Cauduro i Daniel L. Baptista. "Growth of ZnO nanowires and microbeam lithography for field emission applications". W 2013 Symposium on Microelectronics Technology and Devices (SBMicro). IEEE, 2013. http://dx.doi.org/10.1109/sbmicro.2013.6676176.
Pełny tekst źródłaZhang, Junying, Yongli Xu i Fuping Li. "Influence of Cow Manure Vermicompost on Plant Growth and Microbes in Rhizosphere on Iron Tailing". W 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162958.
Pełny tekst źródłaRaporty organizacyjne na temat "Growth of Microbe"
Lindow, Steven, Yedidya Gafni, Shulamit Manulis i Isaac Barash. Role and In situ Regulation of Growth Regulators Produced in Plant-Microbe Interactions by Erwinia herbicola. United States Department of Agriculture, sierpień 1992. http://dx.doi.org/10.32747/1992.7561059.bard.
Pełny tekst źródłaChen, Yona, Jeffrey Buyer i Yitzhak Hadar. Microbial Activity in the Rhizosphere in Relation to the Iron Nutrition of Plants. United States Department of Agriculture, październik 1993. http://dx.doi.org/10.32747/1993.7613020.bard.
Pełny tekst źródłaDickman, Martin B., i Oded Yarden. Genetic and chemical intervention in ROS signaling pathways affecting development and pathogenicity of Sclerotinia sclerotiorum. United States Department of Agriculture, lipiec 2015. http://dx.doi.org/10.32747/2015.7699866.bard.
Pełny tekst źródłaPaxson, Christina. Saving and Growth: Evidence from Micro Data. Cambridge, MA: National Bureau of Economic Research, październik 1995. http://dx.doi.org/10.3386/w5301.
Pełny tekst źródłaSutipatanasomboon, Arpaporn. Petri Dishes with Agar: How to Make Agar Plates. ConductScience, czerwiec 2022. http://dx.doi.org/10.55157/cs20220627.
Pełny tekst źródłaKhachiyan, Arman, Anthony Thomas, Huye Zhou, Gordon Hanson, Alex Cloninger, Tajana Rosing i Amit Khandelwal. Using Neural Networks to Predict Micro-Spatial Economic Growth. Cambridge, MA: National Bureau of Economic Research, grudzień 2021. http://dx.doi.org/10.3386/w29569.
Pełny tekst źródłaBaqaee, David, Ariel Burstein, Cédric Duprez i Emmanuel Farhi. Supplier Churn and Growth: A Micro-to-Macro Analysis. Cambridge, MA: National Bureau of Economic Research, maj 2023. http://dx.doi.org/10.3386/w31231.
Pełny tekst źródłaGupta, Shweta. Bioremediation: Brought to You by the Invisible Workforce. Science Repository OÜ, maj 2021. http://dx.doi.org/10.31487/sr.blog.39.
Pełny tekst źródłaBloom, David, David Canning, Rainer Kotschy, Klaus Prettner i Johannes Schünemann. Health and Economic Growth: Reconciling the Micro and Macro Evidence. Cambridge, MA: National Bureau of Economic Research, czerwiec 2019. http://dx.doi.org/10.3386/w26003.
Pełny tekst źródłaMaraist, Caitlin. Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.6246.
Pełny tekst źródła