Gotowa bibliografia na temat „Ground Weather Radars”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ground Weather Radars”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ground Weather Radars"
Protat, Alain, Valentin Louf, Joshua Soderholm, Jordan Brook i William Ponsonby. "Three-way calibration checks using ground-based, ship-based, and spaceborne radars". Atmospheric Measurement Techniques 15, nr 4 (21.02.2022): 915–26. http://dx.doi.org/10.5194/amt-15-915-2022.
Pełny tekst źródłaLombardo, F., F. Napolitano, F. Russo, G. Scialanga, L. Baldini i E. Gorgucci. "Rainfall estimation and ground clutter rejection with dual polarization weather radar". Advances in Geosciences 7 (16.02.2006): 127–30. http://dx.doi.org/10.5194/adgeo-7-127-2006.
Pełny tekst źródłaMin, Chao, Sheng Chen, Jonathan J. Gourley, Haonan Chen, Asi Zhang, Yong Huang i Chaoying Huang. "Coverage of China New Generation Weather Radar Network". Advances in Meteorology 2019 (16.06.2019): 1–10. http://dx.doi.org/10.1155/2019/5789358.
Pełny tekst źródłaBestugin, A. R., M. B. Ryzhikov i Iu A. Novikova. "The frequency range selection for airborne weather radar with the search for areas with the visibility of landmarks for flight and landing". Radio industry 28, nr 3 (29.08.2018): 8–17. http://dx.doi.org/10.21778/2413-9599-2018-28-3-8-17.
Pełny tekst źródłaQi, Youcun, i Jian Zhang. "Correction of Radar QPE Errors Associated with Low and Partially Observed Brightband Layers". Journal of Hydrometeorology 14, nr 6 (22.11.2013): 1933–43. http://dx.doi.org/10.1175/jhm-d-13-040.1.
Pełny tekst źródłaMarzano, Frank S., Errico Picciotti, Mario Montopoli i Gianfranco Vulpiani. "Inside Volcanic Clouds: Remote Sensing of Ash Plumes Using Microwave Weather Radars". Bulletin of the American Meteorological Society 94, nr 10 (1.10.2013): 1567–86. http://dx.doi.org/10.1175/bams-d-11-00160.1.
Pełny tekst źródłaLeinonen, Jussi, Dmitri Moisseev, Matti Leskinen i Walter A. Petersen. "A Climatology of Disdrometer Measurements of Rainfall in Finland over Five Years with Implications for Global Radar Observations". Journal of Applied Meteorology and Climatology 51, nr 2 (luty 2012): 392–404. http://dx.doi.org/10.1175/jamc-d-11-056.1.
Pełny tekst źródłaLouf, Valentin, Alain Protat, Robert A. Warren, Scott M. Collis, David B. Wolff, Surendra Raunyiar, Christian Jakob i Walter A. Petersen. "An Integrated Approach to Weather Radar Calibration and Monitoring Using Ground Clutter and Satellite Comparisons". Journal of Atmospheric and Oceanic Technology 36, nr 1 (styczeń 2019): 17–39. http://dx.doi.org/10.1175/jtech-d-18-0007.1.
Pełny tekst źródłaLi, Yinguang, Guifu Zhang, Richard Doviak i Darcy Saxion. "Scan-to-Scan Correlation of Weather Radar Signals to Identify Ground Clutter". Geoscience and Remote Sensing Letters, IEEE 10, nr 4 (luty 2013): 855–59. http://dx.doi.org/10.1109/lgrs.2012.2226233.
Pełny tekst źródłaHunzinger, Alexis, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble i Alyssa Matthews. "An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans". Atmospheric Measurement Techniques 13, nr 6 (15.06.2020): 3147–66. http://dx.doi.org/10.5194/amt-13-3147-2020.
Pełny tekst źródłaRozprawy doktorskie na temat "Ground Weather Radars"
Arshad, Irshad Ahmad. "Using statistical methods for automatic classifications of clouds in ground-based photographs of the sky". Thesis, University of Essex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250129.
Pełny tekst źródłaJones, David C. "Validation of scattering microwave radiative transfer models using an aircraft radiometer and ground-based radar". Thesis, University of Reading, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284065.
Pełny tekst źródłaBERTOLDO, SILVANO. "X-band mini weather radar network and other wireless sensor networks for environmental monitoring". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2535714.
Pełny tekst źródłaSindhu, Kapil Dev. "Characteristics of Convective Clouds Over the Indian Monsoon Zone from Weather Radar Data". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4144.
Pełny tekst źródłaMosier, Richard Matthew. "Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas". 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7263.
Pełny tekst źródłaLEONI, LORENZO. "Shallow landslides triggered by rainfall: integration between ground-based weather radar and slope stability models in near-real time". Doctoral thesis, 2008. http://hdl.handle.net/2158/547918.
Pełny tekst źródłaFotheringham, T. J. "Comparison of geophysical techniques to determine depth to bedrock in complex weathered environments of the Mount Crawford region, South Australia". Thesis, 2013. http://hdl.handle.net/2440/100086.
Pełny tekst źródłaGeophysical techniques have the ability to characterise the subsurface and define the depth to bedrock. The non-destructive nature and relatively cheap costs of geophysical surveying compared to drilling make it an attractive tool for subsurface analysis. Many studies have utilized geophysics to interpret soil features such as clay content, water content, salinity, textural properties and bulk density. Further work has been done to map the regolith-bedrock boundary. Previous work has been conducted in the Mount Crawford region using remote sensing based techniques to determine depth to bedrock. Comparisons between the effectiveness of different geophysical techniques at determining depth to bedrock have not previously been undertaken in similar environments. Fieldwork was undertaken along three transects chosen to represent different geological environments. Three geophysical apparatus were compared: Electrical Resistivity (ER), Frequency Domain EM (FDEM) and Ground Penetrating Radar (GPR). A simultaneous soil sampling program was conducted to provide ground truthing. The work in this study reveals the strengths and weakness of the three geophysical techniques at determining depth to bedrock in complex weathered environments of the Mount Crawford region, South Australia. The study reveals differences in the responses of the three geophysical techniques at each of the transects. The GPR was found to be largely unsuitable due to rapid attenuation of the signal. Resistivity and FDEM appeared to show similar variations in the models generated, with differences in the resolution and depth of investigation relating to intrinsic differences between the two systems. Qualitative analysis of the data suggests resistivity provides the strongest correlations with drill refusal depths. The FDEM appeared to display similar trends to the resistivity data and the system offers faster data acquisition, however the inverted model displays lower resolution. The data suggests that bedrock along the surveyed transects is highly weathered and relatively conductive compared to overlying regolith.
Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Earth and Environmental Sciences, 2013
Książki na temat "Ground Weather Radars"
Hinton, David A. Airborne derivation of microburst alerts from ground-based terminal doppler weather radar information: A flight evaluation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaA Comparison of Horizontal Cloud-To-Ground Lightning Flash Distance Using Weather Surveillance Radar And The Distance Between Successive Flashes Method. Storming Media, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "Ground Weather Radars"
van Gorp, Jacques J. "Ground Clutter Reduction During Rain Measurements by a Noncoherent Radar System". W Weather Radar Networking, 228–36. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0551-1_26.
Pełny tekst źródłaBaldini, Luca, Nicoletta Roberto, Mario Montopoli i Elisa Adirosi. "Ground-Based Weather Radar to Investigate Thunderstorms". W Remote Sensing of Clouds and Precipitation, 113–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72583-3_4.
Pełny tekst źródłaZhang, Shuai, Jian-xin He i Zhao Shi. "Ground Clutter Analysis and Suppression of Airborne Weather Radar". W Electrical Engineering and Control, 543–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21765-4_66.
Pełny tekst źródłaWilliams, John K., i Gregory Meymaris. "Remote Turbulence Detection Using Ground-Based Doppler Weather Radar". W Aviation Turbulence, 149–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23630-8_7.
Pełny tekst źródłaMarzano, Frank S. "Weather Radar Remote Sensing of Volcanic Ash Clouds for Aviation Hazard and Civil Protection Applications". W Integrated Ground-Based Observing Systems, 189–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12968-1_11.
Pełny tekst źródłaRukundo, Wellen. "Ionospheric Electron Density and Electron Content Models for Space Weather Monitoring". W Magnetosphere and Solar Winds, Humans and Communication. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103079.
Pełny tekst źródłaBrock, Fred V., i Scott J. Richardson. "Precipitation Rate". W Meteorological Measurement Systems. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195134513.003.0011.
Pełny tekst źródłaValero, Mario M., Amanda Makowiecki, Alan Brewer, Craig B. Clements, Neil P. Lareau, Adam K. Kochanski i Edward Strobach. "The California Fire Dynamics Experiment (CalFiDE): Developing Validation Data Sets for Coupled Fire-Atmosphere Simulations". W Advances in Forest Fire Research 2022, 388–93. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_62.
Pełny tekst źródłaDave, Divyang, Rajeev Kumar Gupta, Santosh Kumar Bharti i Ved Prakash Singh. "Role of Meteorological Satellites and Radar in Weather Forecasting". W Artificial Intelligence of Things for Weather Forecasting and Climatic Behavioral Analysis, 16–31. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3981-4.ch002.
Pełny tekst źródłaFerreiro, Larrie D. "Fight on the Landing Grounds". W Churchill's American Arsenal, C4—C4.P71. Oxford University PressNew York, 2022. http://dx.doi.org/10.1093/oso/9780197554012.003.0004.
Pełny tekst źródłaStreszczenia konferencji na temat "Ground Weather Radars"
Kubota, Takuji, Yoichi Saito, Kinji Furukawa, Sambit Kumar Panda, Bipasha Paul Shukla i Atul Kumar Varma. "Evaluations of Ground-Based Weather Radars Over the India with the Spaceborne Precipitation Radar". W IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883885.
Pełny tekst źródłaBorron, Steven E., i Martin P. Derby. "Ground Based Interferometric Synthetic Aperture Radar Combined With a Critical Slope Monitoring Program Will Provide Early Detection of Slope Movement Along Pipeline Corridors". W ASME-ARPEL 2019 International Pipeline Geotechnical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ipg2019-5333.
Pełny tekst źródłaJuan Qin, Renbiao Wu, Zhigang Su i Xiaoguang Lu. "Ground clutter censoring for airborne weather radar employing DEM". W 2011 IEEE CIE International Conference on Radar (Radar). IEEE, 2011. http://dx.doi.org/10.1109/cie-radar.2011.6159940.
Pełny tekst źródłaZhang, Shuna, Ling Wang, Daiyin Zhu i Ye Zhou. "Ground Clutter Suppression for Weather Radar Using An Improved Wavelet Method". W 2021 CIE International Conference on Radar (Radar). IEEE, 2021. http://dx.doi.org/10.1109/radar53847.2021.10028558.
Pełny tekst źródłaSlavík, Martin, i Ondřej Vaculín. "Concept of Mission Control System for IN2Lab testing field for Automated Driving". W FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2021-acm-119.
Pełny tekst źródłaRachkov, Dmytro S., David I. Lekhovytskiy, Andrii V. Semeniaka, Viacheslav P. Riabukha i Dmytro V. Atamanskiy. "Lattice-filter-based ground clutter canceller for pulse Doppler weather radar". W 2014 15th International Radar Symposium (IRS). IEEE, 2014. http://dx.doi.org/10.1109/irs.2014.6869251.
Pełny tekst źródłaLi, Yinguang, Guifu Zhang i Richard J. Doviak. "A new approach to detect the ground clutter mixed with weather echoes". W 2011 IEEE Radar Conference (RadarCon). IEEE, 2011. http://dx.doi.org/10.1109/radar.2011.5960612.
Pełny tekst źródłaRenbiao Wu, Hai Li i Yanfei Han. "Adaptive ground clutter suppression for airborne weather radar based on echoes power". W IET International Radar Conference 2013. Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.0313.
Pełny tekst źródłaFalconi, Marta Tecla, Mario Montopoli, Frank Silvio Marzano i Luca Baldini. "Weather radar performance monitoring using a metallic-grid ground-scatterer". W Active and Passive Microwave Remote Sensing for Environmental Monitoring, redaktorzy Claudia Notarnicola, Nazzareno Pierdicca i Emanuele Santi. SPIE, 2017. http://dx.doi.org/10.1117/12.2282163.
Pełny tekst źródłaEchevarria, Santiago, Jorge Cogo i Juan Pablo Pascual. "Goodness-of-fit Based Weather Radar Ground Clutter Model Selection". W 2019 XVIII Workshop on Information Processing and Control (RPIC). IEEE, 2019. http://dx.doi.org/10.1109/rpic.2019.8882182.
Pełny tekst źródła