Rozprawy doktorskie na temat „Ground Water Storage”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 15 najlepszych rozpraw doktorskich naukowych na temat „Ground Water Storage”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
He, Miaomiao. "Analysis of underground thermal energy storage systems with ground water advection in subtropical regions". Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38642761.
Pełny tekst źródłaHe, Miaomiao, i 何苗苗. "Analysis of underground thermal energy storage systems with ground water advection in subtropical regions". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38642761.
Pełny tekst źródłaHerndon, Roy Lee. "Hydrogeology of Butler Valley, Arizona an artificial recharge and ground-water storage prefeasibility study /". Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_316_sip1_w.pdf&type=application/pdf.
Pełny tekst źródłaJohn, David E. "Transport and Survival of Water Quality Indicator Microorganisms in the Ground Water Environment of Florida: Implications for Aquifer Storage and Waste Disposal". [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000155.
Pełny tekst źródłaMahed, Gaathier. "Analysis of temporal and spatial variations in water storage by means of gravimetric and hydrologic methods in the region around the South African gravimetric observation station". Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/6714.
Pełny tekst źródłaJohn, David E. (David Eric). "Transport and survival of water quality indicator microorganisms in the ground water environment of Florida [electronic resource] : implications for aquifer storage and waste disposal / by David E. John". University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000155.
Pełny tekst źródłaDocument formatted into pages; contains 322 pages.
Thesis (Ph.D.)--University of South Florida, 2003.
Includes bibliographical references.
Text (Electronic thesis) in PDF format.
ABSTRACT: Ground water resources are heavily used for drinking water supply and often as a receptacle for waste water. One concern is the possible contamination of wetland areas by ground water receiving septic system infiltration. To investigate this, two tracer studies were performed using the bacteriophage PRD-1 by seeding septic systems adjacent to wetlands with the phage and monitoring migration towards wetland areas. Transport velocities were evaluated based on appearance of tracer in sampling wells at various distances from the injection point. Velocities were estimated to be 0.25 m/d and 0.4 m/d at the two sites. Some retardation with respect to the conservative tracer SF6 was observed, with a factor of about 1.5. Due to dry conditions, the water table was well below surface, so transport of the virus into surface water was not observed. Survival of public-health-related microorganisms in ground water is also a concern.
ABSTRACT: The effects of temperature and total dissolved solids (TDS) on survival of 5 groups of indicator organisms were evaluated in controlled experiments. TDS did not have significant effects on inactivation of these microbes up to 1000 mg/l, but there was indication of reduced inactivation of enterococci at TDS concentrations of 3000 mg/l. Increased temperature consistently resulted in more rapid inactivation. Survival in aquifer and reservoir water samples was also evaluated, and significant effects due to water type, temperature, and pasteurization treatment were observed. Inactivation was more rapid in surface water sources, and pasteurization enhanced survival. For enterococci and DNA coliphage, pasteurization effects were more pronounced in surface water. DNA coliphage and perhaps fecal coliform appeared to be the more-conservative indicator organisms for aquifer injection monitoring.
ABSTRACT: Lastly, it was observed that inactivation rates were considerably slower in pore water of saturated limestone than in the bulk water column of similar water sources and conditions, particularly for enterococci and fecal coliform.
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
Hrubý, Ladislav. "Nejlepší dostupné prvky pro vodojemy". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372246.
Pełny tekst źródłaUlickas, Paulius. "Stabatiškių aikštelės efektyvių sausinimo galimybių analizė". Master's thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120530_125112-27036.
Pełny tekst źródłaThe subject of the research work: Stabatiske site. The aim of the study: analyze current situation of the Stabatiske site and choose drainage potential technical solutions. The specific aims of this study: 1. Analise the hilly land drainage characteristics and causes of excess moisture; 2. Analise Stabatiske site natural conditions and provide adequate drainage measures; 3. Evaluate Stabatiske site topography, geological and hydro-geological conditions; 4. Select the possible drainage schemes, and describe their individual elements. The methodology of the study: for research was using geological, hydrological and hydro-geological data which was summarized, analyzed and structured. To take account of long-lived factor was offer drainage system technical solutions. Results: • Carried out Stabatiske site research and analysis was identified the main reasons why the territory is in the excess moisture; • According to available data was choose optimal drainage system; • Established the geographic, geological and geotechnical point of view appropriate low-level radioactive waste storage facility construction; • Open reclamation ditches and multi-drainage, is the best way to control excess water in Stabatiske site. Conclusions: The main factor determining the selected type of drainage system is designed area. Knowing the storage lifetime (300 years), need for know suitable drainage complex for that period. Knowing the local water regime and soil composition, the best option to... [to full text]
Lavest, Pascal. "Modélisation de la structure interne des réservoirs de type fluviatile : application sur un site de stockage de gaz en aquifère". Vandoeuvre-les-Nancy, INPL, 1996. http://docnum.univ-lorraine.fr/public/INPL_T_1996_LAVEST_P.pdf.
Pełny tekst źródłaFERREIRA, EDUARDO G. A. "Modelagem descritiva do comportamento do cimento Portland em ambiente de repositório para rejeitos radioativos". reponame:Repositório Institucional do IPEN, 2017. http://repositorio.ipen.br:8080/xmlui/handle/123456789/28423.
Pełny tekst źródłaMade available in DSpace on 2018-01-31T16:42:14Z (GMT). No. of bitstreams: 0
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A deposição de rejeitos radioativos em repositórios geológicos profundos vem sendo estudada nos últimos anos em diversos países. Materiais à base de cimento são utilizados nesses repositórios como material estrutural, matriz de imobilização de rejeitos ou material de preenchimento. Compreender o desempenho desse material é essencial para garantir a segurança da instalação durante o seu tempo de vida útil (de milhares a centenas de milhares de anos, dependendo do tipo de rejeito). Este trabalho objetiva modelar o comportamento em longo prazo do cimento Portland e estudar a influência de diversos fatores na hidratação e na evolução desse material. A modelagem descritiva abordou a hidratação do cimento nas condições ambientais esperadas no repositório e os efeitos desses fatores em propriedades mecânicas, mineralógicas e morfológicas do cimento. Os fatores ambientais considerados relevantes neste trabalho foram: alta temperatura e pressão, penetração de água subterrânea contendo íons quimicamente agressivos ao cimento e a presença do campo de radiação proveniente dos rejeitos. Ensaios acelerados de degradação também foram realizados para corroborar com o modelo descrito. Observou-se uma sinergia entre diversos fatores na degradação do cimento, como a influência da temperatura e da radiação em reações deletérias ao material. O resultado da modelagem apontou três principais possíveis causas de falha nas barreiras artificiais: a) a formação de um caminho preferencial; b) a perda de resistência e coesão do material; e c) o aumento na corrosão das estruturas metálicas. A descrição do modelo apresentada é a base para a modelagem matemática e a análise de segurança dos repositórios estudados no Brasil.
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
CAPES:1231206
Evans, Karen L. "A transient methodology for evaluating risk reduction associated with ground water remediation at leaking underground storage tank sites". Thesis, 1995. http://hdl.handle.net/1911/13945.
Pełny tekst źródłaSingh, Urisha. "The health-related microbial quality of drinking water from ground tanks, standpipes and community tankers at source and point-of-use in eThekwini Municipality : implications of storage containers, household demographics, socio-economic issues, hygiene and sanitation practices on drinking water quality and health". Thesis, 2009. http://hdl.handle.net/10413/8362.
Pełny tekst źródłaThesis (M.Sc.)-University of KwaZulu-Natal, 2009.
Makgoka, Seretloane Japhtaline. "Comparison of water quality between sources and between selected villages in the Waterberg District of Limpopo Province; South Africa: with special reference to chemical and microbial quality". Thesis, 2005. http://hdl.handle.net/10386/91.
Pełny tekst źródłaWater and sanitation inadequacy is still an environmental health challenge in several regions worldwide and a billion people lack access to safe water, while 2.4 billion people have inadequate sanitation [2]. Assessment of water quality by its chemistry includes measures of elements and molecules dissolved or suspended in water. Commonly measured chemical parameters include arsenic, cadmium, calcium, chloride, fluoride, total hardness, nitrate, and potassium [16]. Water quality can also be assessed by the presence of waterborne microorganisms from human and animals’ faecal wastes. These wastes contain a wide range of bacteria, viruses and protozoa that may be washed into drinking water supplies [21]. Three villages were selected for water quality analysis, based on their critical situation regarding access to water and sanitation: namely, Matlou, Sekuruwe and Taolome villages, situated in the Mogalakwena Local Municipality within the Waterberg district of the Limpopo Province, South Africa. A proposal was written to the Province of North Holland (PNH) and was approved for funding to start with the implementation of those projects, with 20% of each village’s budget allocated for water quality research [26]. This was a cross sectional, analytical study to investigate the chemical and microbial quality of water in Matlou, Sekuruwe and Taolome villages. The study was also conducted to explore methods used by household members to store and handle water in storage tanks. Water samples were collected and analysed according to the standard operating procedures (SOPs) of the Polokwane Municipality Wastewater Purification Plant in Ladanna, Polokwane City of South Africa. The questionnaire used was adopted from the one used for cholera outbreak in the Eastern Cape Province of South Africa. Results show that water from all sources in all the villages had increased total hardness concentration. Water from the borehole in Matlou village had increased number of total coliform bacteria. There were increased total and faecal coliform bacteria in storage tanks samples from Matlou village. Water samples from reservoirs in Sekuruwe and Taolome villages did not test positive for any microbial contamination. Water from xiv informally connected yard taps in Sekuruwe village had increased total coliform bacteria, while increased total and faecal coliforms were found in households’ storage tanks. Water samples from communal taps in Taolome village had minimal number of total coliform bacteria, while water from storage tanks had both increased total and faecal coliform bacteria. Matlou village was the only place with increased nitrate concentration at the households’ storage tanks. While all the villages had microbial contamination, Taolome village had the least number of coliform bacteria in water samples from households’ storage tanks as compared to Matlou and Sekuruwe villages. It is concluded that water from sources supplied by the municipalities are safe to be consumed by humans while water from informally connected taps and households’ storage tanks are not safe to be used without treatment. It is recommended that a health and hygiene education package be prepared for all the villages, so that handling of water from the main source into their storage tanks can be improved. Secondly, it is recommended that water in all sources be treated for total hardness and water in storage tanks in Matlou village be treated for nitrate. Thirdly, it is recommended that water be accessed everyday of the week, so that people do not use unsafe water supplies.
The Province of North Holland, Netherlands.
Govender, Marilyn. "Assessing groundwater access by trees growing above contaminated groundwater plumes originating from gold tailings storage facilities". Thesis, 2012. http://hdl.handle.net/10539/11221.
Pełny tekst źródłaDeep-level gold mining in the Witwatersrand Basin Goldfields (WBG) of central South Africa is characterised by the production of extensive unlined tailings storage facilities (TSFs) comprising large quantities of pulverised rock and water contaminated with salts and a wide range of other inorganic pollutants (Weiersbye et al., 2006). There are more than 200 such TSFs covering a total area of more than 400 km2 (Rosner et al., 2001), and significant contaminated “footprint” areas occur after removal and reprocessing of the original TSFs (Chevrel et al., 2003). It is estimated that the Witwatersrand Basin contains six billion tons of gold and uranium tailings (Chevrel et al., 2003), 430 000 tons of uranium (Council of Geoscience, 1998; Winde, 2004a; b; c) and approximately 30 million tons of sulphur (Witkowski and Weiersbye, 1998a). An estimated 105 million tons of waste per annum is generated by the gold mining industry within the WBG (Department of Tourism, Economic and Environmental Affairs, 2002; Chamber of Mines of South Africa, 2004). A major environmental problem resulting from deep level mining in the WBG is the contaminated water that seeps from TSFs into adjacent lands and groundwater. Van As (1992) reported on the significant environmental hazards resulting from the storage of highly pulverised pyrite rock waste in TSFs (Straker et al., 2007). Adjacent lands become polluted through near-surface seepage, and this is enhanced by the movement of polluted groundwater in shallow aquifers that are commonly 1-30 m below ground (Funke, 1990; Hodgson et al., 2001; Rosner et al., 2001; Naicker et al., 2003). The impact of the mines and the TSFs extends far beyond their localities (Cogho et al., 1990). The Vaal River catchment receives a large proportion of the pollutants from WBG mining activities, with consequent acidification and salinisation of surface and ground waters. Salt discharges to the Vaal River were estimated to be 170 000 t/annum (Best, 1985), whereas discharges from the Free State gold mines south of the Vaal catchment were estimated at 350 000 t/annum of salts (Cogho et al., 1990). Concern also exists over the spread of dangerous contaminants such as uranium, chromium and mercury (Coetzee et al., 2006; Winde, 2009). Engineering solutions to these problems are hindered by the large sizes and great extent of TSFs, the high and indefinite costs involved, and the typically low hydraulic conductivity in affected aquifers, which makes the “pump and treat” option impractical. An alternative phytoremediation strategy is to establish belts or blocks of trees in strategic areas surrounding the TSFs in order to reduce the seepage of contaminated water into adjacent lands and groundwater bodies. The major reasons why trees are likely to have a greater impact on seepage water than the existing grasslands that characterise the area around most TSFs in the WBG, are that some tree species have the potential to develop very deep root systems and to continue transpiring water throughout the year. This is in contrast to seasonally dormant grasslands. In addition, some tree species are known to be tolerant to salts and other pollutants. Trees are thus potentially able to reach deep water tables, take up large quantities of water, and remove some of the pollutants in this water. It is crucial for a successful implementation of this strategy to know on what sites trees are able to access mine seepage water, and consequently maintain a high year-round rate of water use. If this access is limited, then growth and water use will be curtailed during the long winter dry season, and control of seepage will be considerably below potential. A primary aim of this study was to develop methodologies to discriminate between water-stressed and non-water-stressed trees currently growing in three gold mining districts (Welkom, Vaal River, West Wits) within the WBG. This information was required to assess what site types are likely to support adequate tree growth and permit high rates of water use and seepage control. The tree species selected were those most widely occurring in these areas, and include the non-native species Eucalyptus sideroxylon A. Cunningham ex Woolls and Eucalyptus camaldulensis Dehnhardt, as well as the indigenous species Searsia lancea L.f. Various remote sensing technologies including leaf-level spectroscopy, satellite and airborne remote sensing images were evaluated for their usefulness in detecting levels of winter-time water stress. Four commonly used ground-truthing techniques (predawn leaf water potential, leaf chlorophyll fluorescence, leaf chlorophyll and carotenoid pigment content, and leaf water content) were used for localised measurements of plant water stress and for ground-truthing of remotely sensed data on 75 sample sites and 15 sample sites. This study provided a unique opportunity to test and compare the use of stress reflectance models derived from different remote sensing data acquired at different spatial and spectral resolutions (i.e. multispectral and hyperspectral) for the same geographical location. The use of remote sensing to examine the spectral responses of vegetation to plant stress has been widely described in the scientific literature. A collation of published spectral reflectance indices provided the basis for investigating the use of hand-held remote sensing technology to detect plant water stress, and was used as a stepping stone to further develop spectral plant water stress relationships for specific tree species in this study. Seventy seven spectral reflectance indices and specific individual spectral wavelengths useful for detecting plant water stress, plant pigment content, the presence of stress related pigments in vegetation, and changes in leaf cellular structure, were investigated using hand-held spectroscopy. Ground-based measurements of plant water stress were taken on 75 sample trees. In this study, the measurement of predawn leaf water potential has been identified as a key methodology for linking remotely sensed assessments of plant water stress to actual plant water stress; a reading of -0.8 MPa was used to separate stressed trees from unstressed trees in the landscape (Cleary and Zaerr, 1984). The results of the predawn leaf water potential measurements ranged from -0.56 to -0.68 MPa at unstressed sites, and from -0.93 to -1.78 MPa at stressed sites. A novel approach of using spectral reflectance indices derived from previous studies was used to identify specific indices which are applicable to South Africa and to the three species investigated in the WGB. Maximal multiple linear regression models were derived for all possible combinations of plant water stress measurements and the 77 spectral reflectance indices extracted from leaf-level spectral reflectance data, and included the interactions of district and species. The results of the multiple linear regression models indicated that the (695/690) index, DATT index (850-710)/(850-680), near infra-red index (710/760) and the water band (900/970) index performed well and accounted for more than 50% of the variance in the data. The stepwise regression model derived between chlorophyll b content and the DATT index was selected as the “best” model, having the highest adjusted R2 of 69.3%. This was shown to be the most robust model in this application, which could be used at different locations for different species to predict chlorophyll content at the leaf-level. Satellite earth observation data were acquired from two data sources for this investigation; the Hyperion hyperspectral sensor (United States Geological Survey Earth Resources Observation Systems) and the Proba Chris pseudo-hyperspectral sensor (European Space Agency). The Hyperion sensor was selected to obtain high spatial and spectral resolution data, whereas the Proba Chris sensor provided high spatial and medium spectral resolution earth observation data. Twelve vegetation indices designed to capture changes in canopy water status, plant pigment content and changes in plant cellular structure, were selected and derived from the satellite remote sensing imagery. Ground-based measurements of plant water stress undertaken during late July 2004 were used for ground-truthing the Hyperion image, while measurements undertaken during July 2005 and August 2005 were used for ground-truthing the Proba Chris images. Predawn leaf water potential measurements undertaken for the three species, ranged from -0.42 to -0.78 MPa at unstressed sites, and -0.95 to -4.66 MPa at stressed sites. Predawn leaf water potentials measured for E. camaldulensis trees sampled in species trials in Vaal River were significantly different between stressed and non stressed trees (t = 3.39, 8df, P = 0.009). In contrast, E. camaldulensis trees sampled near a pan within the Welkom mining district, which had greater access to water but were exposed to higher concentrations of salts and inorganic contaminants, displayed differences in total chlorophyll content (t = -2.20, 8df, P = 0.059), carotenoid content (t = -5.68, 8df, P < 0.001) and predawn leaf water potential (t = 4.25, 8df, P = 0.011) when compared to trees sampled on farmland. E. sideroxylon trees sampled close to a farm dam in the West Wits mining district displayed differences in predawn leaf water potential (t = 69.32, 8df, P < 0.001) and carotenoid content (t = -2.13, 8df, P = 0.066) when compared to stressed trees further upslope away from the water source. Multiple linear regressions revealed that the predawn leaf water potential greenness normalised difference vegetation index model, and the predawn leaf water potential water band index model were the “best” surrogate measures of plant water stress when using broad band multispectral satellite and narrow-band hyperspectral satellite data respectively. It was concluded from these investigations that vegetation indices designed to capture changes in plant water content/plant water status and spectral changes in the red edge region of the spectrum, performed well when applied to high spectral resolution remote sensing data. The greenness normalised difference vegetation index was considered to be a fairly robust index, which was highly correlated to chlorophyll fluorescence and predawn leaf water potential. It is recommended that this index has the potential to be used to map spatial patterns of winter-time plant stress for different genera/species and in different geographical locations. Airborne remote sensing surveys were conducted to investigate the application of high spatial resolution remote sensing data to detect plant water stress. Multispectral airborne imagery was acquired by Land Resource International (PTY) Ltd, South Africa. Ground-based measurements of plant water stress were carried out during July and August 2005.Four individual spectral bands and two vegetation spectral reflectance indices, which are sensitive to changes in plant pigment content, were derived from the processed multispectral images viz. red, green, blue and near-infrared spectral bands and the normalised difference vegetation index (NDVI) and greenness normalised difference vegetation index (GNDVI).The results of the multispectral airborne study revealed that carotenoid content together with the green spectral waveband resulted in the “best” surrogate measure of plant water stress when using broad-band multispectral airborne data. Airborne remote sensing surveys were conducted by Bar-Kal Systems Engineering Ltd, Israel, to investigate the application of hyperspectral airborne imagery to detect plant water stress. Six vegetation spectral reflectance indices designed to capture changes in plant pigment and plant water status/content, were derived from the processed hyperspectral images. When using airborne hyperspectral data, predawn leaf water potential with the normalized difference water index was selected as the most appropriate model. It was concluded, upon evaluation of the multiple linear regression models, that the airborne hyperspectral data produced several more regression models with higher adjusted R2 values (Ra2 range 6.2 - 76.2%) when compared to the airborne multispectral data (Ra2 range 6 - 50.1). Exploration of relationships between vegetation indices derived from leaf-level, satellite and airborne spectral reflectance data and ground-based measurements used as “surrogate” measures of plant water stress, revealed that several prominent and recurring spectral reflectance indices could be applied to identify species-specific plant water stress within the Welkom, Vaal River and West Wits mining districts. The models recommended for mapping and detecting spatial patterns of plant water stress when using different sources of remote sensing data are as follows: the chlorophyll b DATT spectral reflectance model when derived from leaf-level spectral reflectance data, can be applied across all three mining districts the predawn leaf water potential GNDVI spectral reflectance model and predawn leaf water potential water band index spectral reflectance model when utilising satellite multispectral and hyperspectral remote sensing data carotenoid content green band spectral reflectance model can be used for airborne multispectral resolution data predawn leaf water potential NDVI spectral reflectance model is best suited for airborne high spatial and hyperspectral resolution data. These results indicate that measurements of predawn leaf water potential and plant pigment content have been identified as key methodologies for ground-truthing of remotely sensed data and can be used as surrogate measures of plant water stress. Some preliminary research was undertaken to evaluate if wood anatomy characteristics could be used as a non-destructive and rapid low-cost survey approach for identifying trees which are experiencing long-term plant stress. Seventy two wood core samples were extracted and analysed. Predawn leaf water potential measurements were used to classify stressed and unstressed trees. Relative differences in radial vessel diameter, vessel frequency and wood density were examined. Comparison of the radial vessel diameter and vessel frequency measurements revealed significant differences in three of the five comparative sampling sites (p <0.05). The results of the density analyses were significantly different for all five comparative sampling sites (p < 0.01). In general, trees experiencing higher plant water stress displayed smaller vessel diameters, compared to less stressed or healthy trees. Sites which were influenced by high levels of contaminated water also displayed smaller vessel diameters, indicating that the uptake of contaminants could affect the wood anatomy of plants. Trees considered to be experiencing higher plant water stress displayed higher vessel frequency. This preliminary study showed that plant stress does influence the wood anatomical characteristics (radial vessel diameter, vessel frequency and wood density) in E. camaldulensis, E. sideroxylon and S. lancea in the three mining districts. Spatial patterns of trees, mapped in the three gold mining districts, Welkom (27º57´S, 26º34´E) in the Free State Province, Vaal River (26º55´S, 26º40´E) located in the North West Province, and West Wits (26º25´S, 27º21´E) located in Gauteng, which were not experiencing winter-time water stress were correlated to site characteristics such as average soil depth, percent clay in the topsoil, groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity and groundwater water level. The spectral reflectance model derived between predawn leaf water potential and the green normalised difference vegetation index using broad-band multispectral Proba Chris satellite data was used to map spatial patterns of unstressed trees across the three mining districts. Very high resolution (75 cm) multispectral airborne images acquired by LRI in 2005 were used to demarcate and classify vegetation using the maximum likelihood supervised classification technique. Interpolated surfaces of groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity, pH and groundwater table levels were created using the kriging geostatistical interpolation technique for each mining district. Random sample analyses between stressed and unstressed trees were extracted in order to determine whether site characteristics were significantly different (using t-tests). Site characteristic surfaces which were significantly different from stressed areas were spatially linked to trees which were not experiencing winter-time plant water stress for each tree species investigated in each mining district. This spatial correlation was used to make recommendations and prioritise sites for the establishment of future block plantings. Analysis of the site characteristic data and the geophysical surveys undertaken in the three mining districts which provided detailed information on groundwater saturation and an indication of the salinity conditions, confirmed the presence of relatively shallow and saline groundwater sources. This would imply that tree roots could access the relatively shallow groundwater even during the dry winter season and assist in containing contaminated groundwater seeping into surrounding lands. Keywords : airborne imagery, ground-based measurements of plant water stress, hyperspectral, leaf-level spectroscopy, multispectral, satellite imagery, spatial patterns of unstressed trees, spectral reflectance indices
Mukherjee, Amritendu. "Effect of urbanisation & population density on groundwater in India using satellite remote sensing data". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4987.
Pełny tekst źródła