Gotowa bibliografia na temat „Ground Water contamination”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ground Water contamination”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ground Water contamination"
Verma, Sanjay Kumar, i Dr Ajay Kr Upadhyay. "Arsenic Contamination of Ground water and Health Risk". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30.06.2018): 836–42. http://dx.doi.org/10.31142/ijtsrd14125.
Pełny tekst źródłaKRESSE, F. C. "Exploration for Ground-Water Contamination". Environmental & Engineering Geoscience xxii, nr 3 (1.08.1985): 275–80. http://dx.doi.org/10.2113/gseegeosci.xxii.3.275.
Pełny tekst źródłaKiilerich, Ole, i Erik Arvin. "Ground Water Contamination from Creosote Sites". Groundwater Monitoring & Remediation 16, nr 1 (luty 1996): 112–17. http://dx.doi.org/10.1111/j.1745-6592.1996.tb00578.x.
Pełny tekst źródłaItyel, Daniel. "Ground water: Dealing with iron contamination". Filtration & Separation 48, nr 1 (styczeń 2011): 26–28. http://dx.doi.org/10.1016/s0015-1882(11)70043-x.
Pełny tekst źródłaSchiffman, Arnold. "GROUND-WATER CONTAMINATION -A REGULATORY FRAMEWORK". Ground Water 26, nr 5 (wrzesień 1988): 554–58. http://dx.doi.org/10.1111/j.1745-6584.1988.tb00788.x.
Pełny tekst źródłaOlivieri, Adam, Don Eisenberg, Martin Kurtovich i Lori Pettegrew. "Ground‐Water Contamination in Silicon Valley". Journal of Water Resources Planning and Management 111, nr 3 (lipiec 1985): 346–58. http://dx.doi.org/10.1061/(asce)0733-9496(1985)111:3(346).
Pełny tekst źródłaAssmuth, T. W., i T. Strandberg. "Ground water contamination at Finnish landfills". Water, Air, & Soil Pollution 69, nr 1-2 (lipiec 1993): 179–99. http://dx.doi.org/10.1007/bf00478358.
Pełny tekst źródłaAKMAM, Wardatul, i Md Fakrul ISLAM. "Arsenic Contamination in Ground Water in Bangladesh". Studies in Regional Science 37, nr 3 (2007): 829–40. http://dx.doi.org/10.2457/srs.37.829.
Pełny tekst źródłaRosenfeld, Jeffrey K., i Russell H. Plumb. "Ground Water Contamination at Wood Treatment Facilities". Groundwater Monitoring & Remediation 11, nr 1 (luty 1991): 133–40. http://dx.doi.org/10.1111/j.1745-6592.1991.tb00360.x.
Pełny tekst źródłaYates, Marylynn V. "Septic Tank Density and Ground-Water Contamination". Ground Water 23, nr 5 (wrzesień 1985): 586–91. http://dx.doi.org/10.1111/j.1745-6584.1985.tb01506.x.
Pełny tekst źródłaRozprawy doktorskie na temat "Ground Water contamination"
Halstead, John Michael. "Managing ground water contamination from agricultural nitrates". Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54787.
Pełny tekst źródłaPh. D.
Montague, David Joel. "Managing agricultural contamination of ground water: the institutional framework". Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43408.
Pełny tekst źródłaAubin, Eric. "Impact of water table management on ground water contamination by two herbicides". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55410.
Pełny tekst źródłaThe amount of rainfall received in the first few weeks following herbicide application is crucial in assessing the extent of ground water contamination. In 1992, fewer rainfall events occurred after the application as compared to 1993, so metribuzin leached slowly. In 1992, it appears that subirrigation reduced ground water contamination by a factor of 10 through enhanced degradation and the greater effect of dilution. However, the role of subirrigation in reducing the metribuzin contamination of ground water was negligible in 1993 due to considerable leaching soon after the application.
The second project was conducted in an organic soil in St-Patrice-de-Sherrington (Van Winden farm) where the herbicide prometryn was studied. Surface irrigation with a controlled water table was also used as a water table management system. One experimental unit was used for each of the three treatments (subirrigation, surface irrigation and subsurface drainage).
The herbicide application rate was greater at the Van Winden farm than in the Laurin farm (5.5 kg/ha versus 1.0 kg/ha). However, a higher adsorption coefficient of the organic soil minimized the leaching process. Ground water contamination was less extensive in the organic deposit. The effect of subirrigation in reducing ground water contamination was significant when the water table was shallow. Prometryn degradation was relatively slow during the summer. Moreover, significant amounts of prometryn carried-over into the soil after the winter season, so it appears to be a quite persistent herbicide in our climate.
Anderson, Jacob. "Geochemical Tracers of Surface Water and Ground Water Contamination from Road Salt". Thesis, Boston College, 2013. http://hdl.handle.net/2345/3313.
Pełny tekst źródłaThe application of road de-icers has lead to increasing solute concentrations in surface and ground water across the northern US, Canada, and northern Europe. In a public water supply well field in southeastern Massachusetts, USA, chloride concentrations in ground water from an unconfined aquifer have steadily risen for the past twenty years. The objectives of this study are to understand spatial and temporal trends in road salt concentrations in order to identify contamination sources and fate. To this end, the methods of this project include field and lab work. Water samples were collected from surface, near-surface, and ground water from March 2012 to March 2013. The other major field data are specific conductance measurements from probes located in three piezometers. In the lab, all samples were analyzed for major ions with ion chromatography analysis. Additionally, trace elements were measured by inductively coupled plasma analysis on a subset of samples. The results of these hydrogeochemical procedures showed several important trends. First, the highest concentrations of sodium and chloride from near-surface samples were located near to roadways. Second, ground water samples taken from glacial sediments contained relatively high concentrations throughout the water column, whereas ground water samples from wetlands had high concentrations only near the surface. Third, there was no clear relationship between pH and cation concentrations. Finally, specific conductance data showed strong seasonal trends near to the surface, whereas values taken from deeper in the aquifer were steadily increasing. Based on these results, it is highly probable that road salt application is the dominate contamination source. The pathways of road salt in the watershed include runoff into surface water and infiltration into the vadose zone and ground water. Road salt appears to preferentially travel through glacial features rather than floodplain features. It is possible that sodium from road salt is sorbed to aquifer sediment and displaces other cations. However, the low values of trace metals suggest that cation exchange is not mobilizing heavy metals. Finally, the increasing specific conductance values deep in the aquifer suggest that road salt is retained within the aquifer and concentrations will likely increase in the future if the current road salt application procedures are continued
Thesis (MS) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Earth and Environmental Sciences
Hussein, Maged M. "Impact of ground-water contamination on the Great Miami River basin /". The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu148794815862844.
Pełny tekst źródłaDay, Stephen Wayne. "Ground water contamination from an abandoned landfill site in Delaware County, Indiana". Virtual Press, 1986. http://liblink.bsu.edu/uhtbin/catkey/474188.
Pełny tekst źródłaElmore, Andrew Curtis. "Monte Carlo simulation of ground water remediation at a Nebraska contamination site". Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185706.
Pełny tekst źródłaUhlman, Kristine, i Janick Artiola. "Nitrate Contamination Potential in Arizona Groundwater: Implications for Drinking Water Wells". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2011. http://hdl.handle.net/10150/156932.
Pełny tekst źródłaThis fact sheet is to be taken from research conducted by Uhlman and Rahman and published on the WRRC web site as: "Predicting Ground Water Vulnerability to Nitrate in Arizona". Funded by TRIF and peer reviewed by ADEQ. It also follows on "Arizona Well Owner's Guide to Water Supply" and also "Arizona Drinking Water Well Contaminants" (part 1 already submitted, part 2 in process).
Arizona's arid environment and aquifer types allow for the persistence of nitrate contamination in ground water. Agricultural practices and the prevalence of septic systems contributes to this water quality concern, resulting in nitrate exceeding the EPA Maximum Contaminant Level (MCL) in several locations across the state. Working with known nitrate concentrations in 6,800 wells across the state, this fact sheet presents maps showing the probability of nitrate contamination of ground water exceeding the MCL. The importance of monitoring your domestic water supply well for nitrate is emphasized.
Beck, Daniel S. "A ground water report on the Fernald, Ohio contamination in the Miami Valley Aquifer". Connect to resource, 1996. http://hdl.handle.net/1811/31770.
Pełny tekst źródłaWaters, Lois Diane. "Relationships Between Hybrid Poplar Tree Extractives and Ground Water Contamination at a Phytoremediation Site". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31583.
Pełny tekst źródłaIn 1997, a phytoremediation program began at a creosote-contaminated former railroad tie yard in Oneida, Tennessee with the planting of over 1000 hybrid poplar trees onsite. Creosote, a mixture of hazardous chemicals composed of 85% polycyclic aromatic hydrocarbons (PAH) had entered the site soil and ground water. After planting, a seasonal ground water testing program began that monitored the progress of remediation by measuring the concentration of the 10 predominant PAHs in the contaminant plume: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, and benzo(b)fluoranthene. The concentrations of these compounds steadily decreased over time, but the role the trees played in the remediation was unclear.
In order to gain a clearer understanding of the role the trees played in contaminant remediation, chemical analysis of tree tissue began. It was not known whether the trees were taking up PAH contaminants or their metabolites or if the rhizosphere zone created by the trees simply enhanced the ability of the site microflora to degrade the PAH. The objectives of this research were to (1) develop a suitable method for the chemical analysis of tree tissue collected from a field site, (2) determine if there were any chemicals not usually found in poplar trees that occurred in the trees growing over contamination, (3) determine if bud, bark, and twig tissue differed in their ability to predict ground water contamination, and (4) determine if a spatial correlation existed between the aromatic compounds in the tree tissue and the ground water total PAH plume.
Two types of tree tissue/ground water comparisons were performed: spatial distribution of isoeugenol concentration in tree tissue with spatial distribution of total PAH in ground water over the area of interest; and the spatial distribution of the quantity of aromatic compounds in tree tissue with the spatial distribution of total PAH concentration in ground water. Due to unit discrepancies between the quantities of interest, all comparisons were made on a percentile basis.
Initial tree sampling revealed that several compounds not usually present in poplar trees occurred only in those trees growing over contamination. In the first part of this study, the concentration of one of these chemicals, the substituted phenol isoeugenol, was compared with the concentration of total PAH in ground water from samples collected from February-March 2002. The bark tissue percentiles fell within 20 percentiles of ground water total PAH concentrations in 60% of the study area. The twig tissue showed slightly better agreement, with 67% of the study area differing from ground water by twenty percentiles or less.
The second comparison took place over three sampling events: March 2001, July 2001, and February-March 2002. The number of unique aromatic compounds in bark, bud, and twig tissue was compared with the total PAH concentration in ground water. Twig tissue aromatic compound content was the most accurate predictor of ground water contamination among the tissue types. After excluding those chemicals likely to be interferences from consideration, twig tissue aromatic content agreed with ground water total PAH concentration to within 20 percentiles over 2/3 or more of the study area during each sampling event, suggesting the potential uptake of PAHs or their microbial metabolites as a mechanism of phytoremediation at the site.
Master of Science
Książki na temat "Ground Water contamination"
Collins, AG, i AI Johnson, red. Ground-Water Contamination: Field Methods. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1988. http://dx.doi.org/10.1520/stp963-eb.
Pełny tekst źródłaCenter for Environmental Research Information (U.S.), red. Ground water: Contamination and methodology. Lancaster, Pa: Technomic Pub. Co., 1990.
Znajdź pełny tekst źródłaWang, Ching-Pi. Ground water contamination assessment: Acme, Washington. [Olympia, Wash.]: Washington State Dept. of Ecology, 1989.
Znajdź pełny tekst źródłaRagone, Stephen E. Toxic waste--ground-water contamination program. [Reston, Va.]: U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaRagone, Stephen E. Toxic waste--ground-water contamination program. [Reston, Va.]: U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaJadavpur University. School of Environmental Studies. i Dhaka Community Hospital, red. Ground water arsenic contamination in Bangladesh. Calcutta: School of Environmental Studies, Jadavpur University & Dhaka Community Hospital, Dhaka, 2000.
Znajdź pełny tekst źródłaRagone, Stephen E. Toxic waste--ground-water contamination program. [Reston, Va.]: U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaRagone, Stephen E. Toxic waste--ground-water contamination program. [Reston, Va.]: U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaS, Rifai H., i Newell Charles J, red. Ground water contamination: Transport and remediation. Englewood Cliffs, N.J: PTR Prentice Hall, 1994.
Znajdź pełny tekst źródłaRagone, Stephen E. Toxic waste--ground-water contamination program. [Reston, Va.]: U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Ground Water contamination"
Türkman, A. "Nitrate Pollution in Ground Water". W Nitrate Contamination, 395–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_29.
Pełny tekst źródłaKim, Nancy K., Anthony J. Grey, Ronald Tramontano, Charles Hudson i Geoffrey Laccetti. "Two Ground Water Contamination Problems". W ACS Symposium Series, 530–40. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0315.ch030.
Pełny tekst źródłaDillon, P. J., S. R. Ragusa i S. B. Richardson. "Biochemistry of a Plume of Nitrate-Contaminated Ground Water". W Nitrate Contamination, 173–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_12.
Pełny tekst źródłaRock, C. A., S. Irrinki i P. S. Pinkham. "Elimination of Ground-Water Contamination by Septic-Tank Effluent". W Nitrate Contamination, 415–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_31.
Pełny tekst źródłaGanoulis, J. G. "Nitrate Contamination of Surface and Ground Water in Greece". W Nitrate Contamination, 55–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_4.
Pełny tekst źródłaKelly, W. E., B. Curtis i D. Adelman. "Nitrate Ground-Water Modeling for Agricultural and Other Nonpoint Sources". W Nitrate Contamination, 97–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_7.
Pełny tekst źródłaCohen, David B. "Ground Water Contamination by Toxic Substances". W ACS Symposium Series, 499–529. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0315.ch029.
Pełny tekst źródłaWeisenburger, D. D. "Potential Health Consequences of Ground-Water Contamination by Nitrates in Nebraska". W Nitrate Contamination, 309–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_23.
Pełny tekst źródłaChilton, P. J., i S. S. D. Foster. "Control of Ground-Water Nitrate Pollution in Britain by Land-Use Change". W Nitrate Contamination, 333–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_25.
Pełny tekst źródłaGillham, R. W. "Nitrate Contamination of Ground Water in Southern Ontario and the Evidence for Denitrification". W Nitrate Contamination, 181–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76040-2_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Ground Water contamination"
Woerner, Joerg, Sonja Margraf i Walter Hackel. "Remediation of a Uranium-Contamination in Ground Water". W The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7270.
Pełny tekst źródłada Cunha, Kenya Moore Dias, Helenes Henderson, Paul Ward i Bruce M. Thomson. "Ground Water Contamination from Past Uranium Mining: Cove Wash, AZ". W World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.090.
Pełny tekst źródłaFasesan, O. A., L. R. Heinze i I. L. Tesalonika. "Ground-Water Contamination Reduction by Use of Poz Cementing". W Canadian International Petroleum Conference. Petroleum Society of Canada, 2006. http://dx.doi.org/10.2118/2006-117.
Pełny tekst źródłaSharma, Prabhat, Avanish Mishra, Bambam Kumar i S. P. Gaba. "Experimental study of water contamination detection using ground penetrating radar". W 2016 11th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2016. http://dx.doi.org/10.1109/iciinfs.2016.8263031.
Pełny tekst źródłaTroiano, John. "Geographical Basis for Regulating Pesticide Use That Prevents Contamination of California's Ground Water". W World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)426.
Pełny tekst źródłaHallbauer‐Zadorozhnaya, Valeriya Y., i Edgar Stettler. "Time Domain Electromegnetic Soundings to Delineate Hydrocarbon Contamination of Ground Water". W Symposium on the Application of Geophysics to Engineering and Environmental Problems 2009. Environment and Engineering Geophysical Society, 2009. http://dx.doi.org/10.4133/1.3176701.
Pełny tekst źródłaHallbauer-Zadorozhnaya, V., i E. Stettler. "Time Domain Electromagnetic Soundings to Delineate Hydrocarbon Contamination of Ground Water". W 22nd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.157.sageep026.
Pełny tekst źródłaBrian Hughes, W. "Use Of Marine-Seismic Profiling To Study Ground-Water Contamination At Aberdeen Proving Ground, Maryland". W 5th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609-pdb.210.1992_010.
Pełny tekst źródłaHughes, W. Brian. "Use of Marine‐Seismic Profiling to Study Ground‐Water Contamination at Aberdeen Proving Ground, Maryland". W Symposium on the Application of Geophysics to Engineering and Environmental Problems 1992. Environment and Engineering Geophysical Society, 1992. http://dx.doi.org/10.4133/1.2921934.
Pełny tekst źródłaYuehua Jiang i Yun Li. "Characteristics of ground penetrating radar in leakage contamination of Guiyang Shengfu gasoline station". W 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893631.
Pełny tekst źródłaRaporty organizacyjne na temat "Ground Water contamination"
Unknown. GROUND WATER CONTAMINATION. Office of Scientific and Technical Information (OSTI), wrzesień 1999. http://dx.doi.org/10.2172/769315.
Pełny tekst źródłaMunter, J. A., i D. L. Maynard. Extent of ground-water contamination in Alaska. Alaska Division of Geological & Geophysical Surveys, 1987. http://dx.doi.org/10.14509/2439.
Pełny tekst źródłaMunter, J. A. Ground-water contamination at Peters Creek, municipality of Anchorage, Alaska: ground-water occurrence and movement. Alaska Division of Geological & Geophysical Surveys, 1986. http://dx.doi.org/10.14509/2423.
Pełny tekst źródłaDenny, S. C., J. M. Journeay i D. M. Allen. Susceptibility of ground water to contamination, southern Gulf Islands, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2006. http://dx.doi.org/10.4095/222640.
Pełny tekst źródłaAuthor, Not Given. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio). Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/5218240.
Pełny tekst źródłaThompson, Bill. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio). Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/5118624.
Pełny tekst źródłaAuthor, Not Given. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio). Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/5177512.
Pełny tekst źródłaAuthor, Not Given. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio). Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/7067109.
Pełny tekst źródłaAuthor, Not Given. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio). Office of Scientific and Technical Information (OSTI), kwiecień 1992. http://dx.doi.org/10.2172/7076383.
Pełny tekst źródłaHUGHES, ROBERT C., CHAD E. DAVIS i MICHAEL L. THOMAS. Final Report for the SEED Project: ''Inexpensive Chemresistor Sensors for Real Time Ground Water Contamination Measurement''. Office of Scientific and Technical Information (OSTI), kwiecień 2002. http://dx.doi.org/10.2172/808587.
Pełny tekst źródła