Gotowa bibliografia na temat „Grinding -Alloys”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Grinding -Alloys”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Grinding -Alloys"
Niu, Qiu Lin, Guo Giang Guo, Xiao Jiang Cai, Zhi Qiang Liu i Ming Chen. "Analysis of Specific Energy of TC18 and TA19 Titanium Alloys in Surface Grinding". Advanced Materials Research 325 (sierpień 2011): 147–52. http://dx.doi.org/10.4028/www.scientific.net/amr.325.147.
Pełny tekst źródłaZhang, Hong Xia, Wu Yi Chen, Xiu Zhuo Fu i Li Xia Huang. "Grinding Characteristics and Mechanism of Ceramic Alumina Wheels on Aeronautical Alloys". Advanced Materials Research 591-593 (listopad 2012): 373–76. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.373.
Pełny tekst źródłaЛосев, Е., E. Losev, В. Попов, V. Popov, Д. Лобанов, D. Lobanov, П. Архипов, P. Arkhipov, А. Янюшкин i A. Yanyushkin. "Surface quality of tungstenfree hard alloys after diamond machining". Science intensive technologies in mechanical engineering 1, nr 1 (31.01.2016): 20–24. http://dx.doi.org/10.12737/17318.
Pełny tekst źródłaNosenko, Vladimir A., S. V. Nosenko i V. E. Puzirkova. "Grinding of Titanium Alloys". Key Engineering Materials 887 (maj 2021): 287–93. http://dx.doi.org/10.4028/www.scientific.net/kem.887.287.
Pełny tekst źródłaTakahashi, Masatoshi, Masafumi Kikuchi i Yukyo Takada. "Grindability of Ti−Nb−Cu Alloys for Dental Machining Applications". Metals 12, nr 5 (18.05.2022): 861. http://dx.doi.org/10.3390/met12050861.
Pełny tekst źródłaShi, Zhong De, i Helmi Attia. "Feasibility Study on Grinding of Titanium Alloys with Electroplated CBN Wheels". Advanced Materials Research 797 (wrzesień 2013): 73–78. http://dx.doi.org/10.4028/www.scientific.net/amr.797.73.
Pełny tekst źródłaSyreyshchikova, Nelli Vladimirovna, Viktor Ivanovich Guzeev, Dmitrii Valerievich Ardashev, Danil Yurievich Pimenov, Karali Patra, Wojciech Kapłonek i Krzysztof Nadolny. "A Study on the Machinability of Steels and Alloys to Develop Recommendations for Setting Tool Performance Characteristics and Belt Grinding Modes". Materials 13, nr 18 (8.09.2020): 3978. http://dx.doi.org/10.3390/ma13183978.
Pełny tekst źródłaOkuyama, Shigeki, Akinori Yui i Takayuki Kitajima. "Grinding Performance of a Grain-Arranged Diamond Wheel against Aluminum Alloys and Ti6Al4V". Advanced Materials Research 126-128 (sierpień 2010): 107–12. http://dx.doi.org/10.4028/www.scientific.net/amr.126-128.107.
Pełny tekst źródłaSyreyshchikova, Nelli Vladimirovna, Danil Yurievich Pimenov, Munish Kumar Gupta, Krzysztof Nadolny, Khaled Giasin i Shubham Sharma. "Establishing the Relationship between Cutting Speed and Output Parameters in Belt Grinding on Steels, Aluminum and Nickel Alloys: Development of Recommendations". Materials 14, nr 8 (15.04.2021): 1974. http://dx.doi.org/10.3390/ma14081974.
Pełny tekst źródłaTao, Yi Yi, Jiu Hua Xu i Wen Feng Ding. "A Study on Grinding Performance of Porous NiTi Shape Memory Alloy". Key Engineering Materials 359-360 (listopad 2007): 143–47. http://dx.doi.org/10.4028/www.scientific.net/kem.359-360.143.
Pełny tekst źródłaRozprawy doktorskie na temat "Grinding -Alloys"
Wang, S. H. "Investigation into the grinding of titanium alloys". Thesis, Cranfield University, 2000. http://dspace.lib.cranfield.ac.uk/handle/1826/10569.
Pełny tekst źródłaSetti, Dinesh. "Performance improvement in grinding of Ti-6Al-4V alloy and modeling of surface roughness". Thesis, IIT Delhi, 2016. http://localhost:8080/iit/handle/2074/7069.
Pełny tekst źródłaShiue, Ren-Kae. "Active braze alloys for metal single layer grinding technology". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/86277.
Pełny tekst źródłaVita. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 144-153).
Components made of high-performance ceramics or superalloys are subject to strict requirements with regard to their geometric and dimensional accuracy. The surface finish and edge zone characteristics have a large effect on the component's performance. These requirements can not be met directly by the sintering process used in the manufacture of ceramic materials or traditional casting of superalloys. Grinding is both technically and economically the number one choice when one has to consider machining these materials. Metal Single Layer (MSL) grinding technology provides an alternative way to make use of the superabrasives, diamond and CBN, in grinding these materials. One of the primary challenges in MSL grinding technology is to develop suitable active braze alloy(s) which can bond the superabrasive grits. Ticusil (Ag-Cu eutectic+4.5 wt% Ti) and 70Cu-21Sn- 9Ti (wt%) are two of the currently used active braze alloys. The primary failure mode of these two MSL wheels in the grinding test is transverse fracture and debonding of the diamond grits. The high applied load is responsible for transverse fracture of the diamond grit, and the intermetallic phase existing at the interface between the diamond and the braze alloy is one of the causes of the debonding of the diamond grits. Also, a finite element analysis shows that most of the residual thermal stresses and the thermal mismatch strains are localized at the diamond/braze alloy interface. This results in potential weakness of this area. Moreover, the inherent defects, such as voids, and the brittle intermetallics in the interface can cause crack initiation and propagation. Both deteriorate the life of the grinding wheel. The failure of the braze alloy can be divided into two categories. If the grinding process is very abrasive, such as green concrete grinding, the wear resistance of the braze dominates the fracture of the braze alloy. On the other hand, failure of the braze alloy can also result from cracks at the interface. In such a case, the fatigue resistance of the braze alloy plays an important role in determining the wheel's life. The wear resistance of the braze alloy can be improved by introducing suitable hard particles. It was found that a braze alloy of 77Cu-23Sn-12.5Ti-7.5Zr-10TiC-0.2C (by weight) exhibits excellent performance in a wear test (a ten fold improvement), which is further confirmed in the grinding test (a two fold increase in life). The fatigue resistance of the active braze alloy can be modified by either reducing the volume fraction of the brittle intermetallic phase in the braze and/or enhancing the ductility of the braze alloy matrix. A ductile active braze alloy can be achieved by combining the two-layer structure and two step brazing process. To aid dissolution and diffusion of the Cu atoms into the Cu/Sn/Ti braze alloy, a lower volume fraction of the intermetallic phase and higher ductile matrix of the braze can be achieved. Both have beneficial effects in modifying the ductility of the active braze alloy, and make removal of the braze alloy from the substrate by acid etching easier.
by Ren-Kae Shiue.
Ph. D.
Fursdon, P. M. T. "The continuous dress creep feed form grinding of titanium alloys". Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/5e6c03d3-5847-415b-9967-65eac98f156e.
Pełny tekst źródłaDzebo, Sead. "Investigation of methods to improve process performance in centerless grinding of Inconel 718 and Ti-6Al-4V superalloys". Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37113.
Pełny tekst źródłaBhaduri, Debajyoti. "Ultrasonic assisted creep feed grinding and dressing of advanced aerospace alloys". Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5415/.
Pełny tekst źródłaRayner, Joshua Lee. "A finite element simulation of thermal profiles in grinding of titanium aluminide". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18967.
Pełny tekst źródłaWojtewicz, Michał. "Research on the influence of grinding wheel impregnation with anti-adhesive substances on the efficiency of nickel based alloys grinding process : PhD thesis summary". Rozprawa doktorska, [s.n.], 2017. http://dlibra.tu.koszalin.pl/Content/1049.
Pełny tekst źródłaShajari, S., i R. Sarraf-Mamoory. "The Effect of Raw Materials Molar Ratio in Mechanochemical Synthesis of Amorphous Fe-B Alloy Nanoparticles". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34897.
Pełny tekst źródłaZhao, Zhijun. "Role of surface active layers on localized breakdown of aluminum alloy 7075". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1160670830.
Pełny tekst źródłaKsiążki na temat "Grinding -Alloys"
Isaacson, A. E. Effect of sulfide minerals on ferrous alloy grinding media corrosion. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1989.
Znajdź pełny tekst źródłaIsaacson, A. E. Effect of sulfide minerals on ferrous alloy grinding media corrosion. Washington, DC: Dept. of the Interior, 1989.
Znajdź pełny tekst źródłaRedden, L. D. Hydrometallurgical recovery of critical metals from hardface alloy grinding waste: A laboratory study. Washington, DC: Dept. of the Interior, 1988.
Znajdź pełny tekst źródłaRedden, L. D. Hydrometallurgical recovery of critical metals from hardface alloy grinding waste: A laboratory study. Pittsburgh, PA: U.S. Dept. of the Interior, Bureau of Mines, 1988.
Znajdź pełny tekst źródłaRakhit, A. K. Heat Treatment of Gears. ASM International, 2000. http://dx.doi.org/10.31399/asm.tb.htgpge.9781627083478.
Pełny tekst źródłaParrish, Geoffrey. Carburizing. ASM International, 1999. http://dx.doi.org/10.31399/asm.tb.cmp.9781627083379.
Pełny tekst źródłaCzęści książek na temat "Grinding -Alloys"
Jackson, Mark J., Micheal D. Whitfield, Grant M. Robinson, Rodney G. Handy i Jonathan S. Morrell. "Grinding of Uranium and Uranium Alloys". W Uranium Processing and Properties, 95–121. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7591-0_4.
Pełny tekst źródłaRudnev, Aleksandr, Yuriy Gutsalenko, Elena Sevidova, Larisa Pupan i Oksana Titarenko. "Diamond Spark Grinding of Hard Alloys Using Solid Lubricants". W Lecture Notes in Mechanical Engineering, 114–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77719-7_12.
Pełny tekst źródłaIbrahim, Elsiddig Eldaw, Heisum Ewad, Xun Chen i Andre D. L. Batako. "Grinding of Titanium Alloys (Ti-6Al-4V) Using Vibration Assisted Machining". W Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering, 86–94. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90532-3_7.
Pełny tekst źródłaKunimine, Takahiro, Motoko Yamada, Hisashi Sato i Yoshimi Watanabe. "Fabrication of Aluminum Alloy-Based Diamond Grinding Wheel by the Centrifugal Mixed-Powder Method for Novel Machining Technology of CFRP". W ICAA13: 13th International Conference on Aluminum Alloys, 189–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch29.
Pełny tekst źródłaPhi, Hung Trong, Got Van Hoang, Tam Ngoc Bui, Trung Kien Nguyen i Son Hoanh Truong. "The Effect of Microstructure on the Cutting Forces and Microhardness in the Surface Grinding of Titanium Alloys". W Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), 525–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69610-8_72.
Pełny tekst źródłaKunitsyn, Maksym, Anatoly Usov i Yulia Sikirash. "Impact of the Heterogeneous Structure of Magnetic Hard Alloys on the Quality Characteristics of the Surface Layer During Grinding Processing". W Lecture Notes in Mechanical Engineering, 405–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91327-4_40.
Pełny tekst źródłaYang, Chang Yong, Jiu Hua Xu, Wen Feng Ding i Sheng Ting Tong. "Grinding Titanium Alloy with Brazed Monolayer CBN Wheels". W Advances in Grinding and Abrasive Technology XIV, 33–37. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.33.
Pełny tekst źródłaTao, Yi Yi, Jiu Hua Xu i Wen Feng Ding. "A Study on Grinding Performance of Porous NiTi Shape Memory Alloy". W Advances in Grinding and Abrasive Technology XIV, 143–47. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.143.
Pełny tekst źródłaYang, Zhi Bo, Jiu Hua Xu, Yu Can Fu i Hong Jun Xu. "Laser Brazing of Diamond Grits with a Ni-Based Brazing Alloy". W Advances in Grinding and Abrasive Technology XIV, 43–47. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.43.
Pełny tekst źródłaHuang, Yun, Z. Huang, Q. S. Xu i W. Zhou. "The Grinding Force Measure and Analysis on the Abrasive Belt Grinding to Magnesium Alloy". W Key Engineering Materials, 726–29. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.726.
Pełny tekst źródłaStreszczenia konferencji na temat "Grinding -Alloys"
Pavel, Radu, Xiqun Wang i Anil K. Srivastava. "Multi-Constraint Optimization for Grinding Nickel-Based Alloys". W ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1205.
Pełny tekst źródłaDias Monteiro, Felipe, Carlos Ventura, Armando Ítalo Sette Antonialli i Edson Bruno Lara Rosa. "Grinding customized carbides for thread turning of titanium alloys". W 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-1692.
Pełny tekst źródłaJackson, Mark J., i Xun Chen. "Reducing Wear of Abrasive Wheels Grinding Aerospace Alloys by Laser Assisted Cleaning". W World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63923.
Pełny tekst źródłaStoimenov, Nikolay, Dimitar Karastoyanov, Milena Groueva, Bogomil Popov i Nikola Sabotinkov. "Robotized High-Temperature Technology Producing Materials and Alloys for Grinding Media". W 2018 5th International Conference on Mathematics and Computers in Sciences and Industry (MCSI). IEEE, 2018. http://dx.doi.org/10.1109/mcsi.2018.00018.
Pełny tekst źródłaYoussef, Sawsen, Olivier Calonne i Hédi Hamdi. "Influence of Hand Disc Grinding on Surface Integrity of Nickel-Based Alloys: Numerical Approach". W ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97974.
Pełny tekst źródłaShen, Nanyan, Yakai Jia i Jing Li. "Surface roughness of titanium alloys TA2 and TC4 in high-speed cylindrical grinding". W 2013 International Conference on Advanced Materials and Information Technology Processing. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/amitp130261.
Pełny tekst źródłaPavel, Radu, i Anil K. Srivastava. "Investigations for Safe Grinding of Ti-6Al-4V Parts Produced by Direct Metal Laser Sintering (DMLS) Technology". W ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4130.
Pełny tekst źródłaМакаренко, Константин, Konstantin Makarenko, Сергей Кузовов, Sergey Kuzovov, Александр Никитин i Alexander Nikitin. "Visualization of the Phase Volume Distribution in Alloys". W 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-236-239.
Pełny tekst źródłaChuri, N. J., Z. C. Li, Z. J. Pei i C. Treadwell. "Rotary Ultrasonic Machining of Titanium Alloy: A Feasibility Study". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80254.
Pełny tekst źródłaScruggs, D. M. "The Tribology of Amorphous Surfaces Formed by Wear of Thermal Spray Coatings". W ITSC 1998, redaktor Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0249.
Pełny tekst źródła