Artykuły w czasopismach na temat „GREEN SYNTHESIZED”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „GREEN SYNTHESIZED”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Giun Tan, Woan, Wei Ming Ng, Jit Kang Lim i Hui Xin Che. "Plantain Peel Mediated Green Synthesis Iron Oxide Nanoparticles, Surface Functionalization, and Them Performance towards Methylene Blue and Methyl Orange Dye Removal". International Journal of Engineering & Technology 7, nr 3.36 (6.05.2018): 101. http://dx.doi.org/10.14419/ijet.v7i3.36.29087.
Pełny tekst źródłaJahangir, H. Syed, T. Tamil Kumar, M. Mary Concelia i R. Alamelu. "Green Synthesis, Characterization & Antibacterial Studies of Silver (Ag) and Zinc Oxide (Zno) Nanoparticles". Journal of Pure and Applied Microbiology 14, nr 3 (3.09.2020): 1999–2008. http://dx.doi.org/10.22207/jpam.14.3.39.
Pełny tekst źródłaJoel T, Jesse, i Jesvin Shobini. "A Plausible Antibacterial Green Synthesized AgNPs from Tridax procumbens Leaf-flower Extract". Journal of Pure and Applied Microbiology 12, nr 4 (30.12.2018): 2135–42. http://dx.doi.org/10.22207/jpam.12.4.51.
Pełny tekst źródłaKausar, Ayesha, Ishaq Ahmad, Tingkai Zhao, M. H. Eisa, O. Aldaghri, Meenal Gupta i Patrizia Bocchetta. "Green-Synthesized Graphene for Supercapacitors—Modern Perspectives". Journal of Composites Science 7, nr 3 (8.03.2023): 108. http://dx.doi.org/10.3390/jcs7030108.
Pełny tekst źródłaKothari, Richa, i Anjali Soni. "GREEN SYNTHESIS OF CHROMIUM OXIDE NANOPARTICLES USING CHROMIUM (III) COMPLEX AS A SINGLE ROUTE PRECURSOR: ANTI-OXIDANT ACTIVITY". RASAYAN Journal of Chemistry 15, nr 02 (2022): 1325–39. http://dx.doi.org/10.31788/rjc.2022.1526700.
Pełny tekst źródłaRoy, Arpita, Vishwajeet Singh, Sukriti Sharma, Daoud Ali, Abul Kalam Azad, Gokhlesh Kumar i Talha Bin Emran. "Antibacterial and Dye Degradation Activity of Green Synthesized Iron Nanoparticles". Journal of Nanomaterials 2022 (17.01.2022): 1–6. http://dx.doi.org/10.1155/2022/3636481.
Pełny tekst źródłaSivanesan, Iyyakkannu, Judy Gopal, Manikandan Muthu, Juhyun Shin, Selvaraj Mari i Jaewook Oh. "Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications". Polymers 13, nr 14 (9.07.2021): 2256. http://dx.doi.org/10.3390/polym13142256.
Pełny tekst źródłaAlsaiari, Norah Salem, Fatimah Mohammed Alzahrani, Abdelfattah Amari, Haitham Osman, Hamed N. Harharah, Noureddine Elboughdiri i Mohamed A. Tahoon. "Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives". Molecules 28, nr 1 (3.01.2023): 463. http://dx.doi.org/10.3390/molecules28010463.
Pełny tekst źródłaAnbarasu, A., P. Karnan, N. Deepa i R. Usha. "CARICA PAPAYA MEDIATED GREEN SYNTHESIZED SILVER NANOPARTICLES". International Journal of Current Pharmaceutical Research 10, nr 3 (17.05.2018): 15. http://dx.doi.org/10.22159/ijcpr.2018v10i3.27221.
Pełny tekst źródłaAhmad, Razi, Nafeesa Khatoon i Meryam Sardar. "Antibacterial Effect of Green Synthesized TiO2 Nanoparticles". Advanced Science Letters 20, nr 7 (1.07.2014): 1616–20. http://dx.doi.org/10.1166/asl.2014.5563.
Pełny tekst źródłaSiegel, Jakub, Marek Staszek, Markéta Polívková, Alena Řezníčková, Silvie Rimpelová i Václav Švorčík. "Green Synthesized Noble Metals for Biological Applications". Materials Today: Proceedings 3, nr 2 (2016): 608–16. http://dx.doi.org/10.1016/j.matpr.2016.01.098.
Pełny tekst źródłaBindhu, M. R., i M. Umadevi. "Antibacterial activities of green synthesized gold nanoparticles". Materials Letters 120 (kwiecień 2014): 122–25. http://dx.doi.org/10.1016/j.matlet.2014.01.108.
Pełny tekst źródłaPark, Sang-Eon, i Kwang-Min Choi. "Green catalysis by microwave synthesized nanostructured materials". Journal of Physics and Chemistry of Solids 69, nr 5-6 (maj 2008): 1501–4. http://dx.doi.org/10.1016/j.jpcs.2007.10.119.
Pełny tekst źródłaBindhu, M. R., V. G. Sathe i M. Umadevi. "SERS Activities of Green Synthesized Silver Nanoparticles". Journal of Cluster Science 26, nr 5 (1.01.2015): 1451–61. http://dx.doi.org/10.1007/s10876-014-0825-y.
Pełny tekst źródłaDeb, S., P. K. Kalita i P. Datta. "Optical properties of green synthesized ZnO nanocomposites". Indian Journal of Physics 87, nr 12 (25.07.2013): 1177–82. http://dx.doi.org/10.1007/s12648-013-0365-6.
Pełny tekst źródłaRoopan, Selvaraj Mohana, Jeyakannu Palaniraja, Ganesh Elango, Prabhakarn Arunachalam i R. Sudhakaran. "Catalytic application of non-toxic Persia americana metabolite entrapped SnO2nanoparticles towards the synthesis of 3,4-dihydroacridin-1(2H)-ones". RSC Advances 6, nr 25 (2016): 21072–75. http://dx.doi.org/10.1039/c5ra25975d.
Pełny tekst źródłaAlthomali, Arwa, Maha H. Daghestani, Fatimah Basil Almukaynizi, Sabah Ahmed Al-Zahrani, Manal A. Awad, Nada M. Merghani, Wadha I. Bukhari i in. "Anti-colon cancer activities of green-synthesized Moringa oleifera–AgNPs against human colon cancer cells". Green Processing and Synthesis 11, nr 1 (1.01.2022): 545–54. http://dx.doi.org/10.1515/gps-2022-0052.
Pełny tekst źródłaAlimohammadi, Vahid, Seyyed Ali Seyyed Ebrahimi, Faezeh Kashanian, Zahra Lalegani, Mehran Habibi-Rezaei i Bejan Hamawandi. "Hydrophobic Magnetite Nanoparticles for Bioseparation: Green Synthesis, Functionalization, and Characterization". Magnetochemistry 8, nr 11 (28.10.2022): 143. http://dx.doi.org/10.3390/magnetochemistry8110143.
Pełny tekst źródłaRezaeian, Masoud, Homa Afjoul, Amir Shamloo, Ali Maleki i Neda Afjoul. "Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential". Nanomedicine 16, nr 18 (sierpień 2021): 1581–93. http://dx.doi.org/10.2217/nnm-2021-0040.
Pełny tekst źródłaBùi Thị Thu, Hà, Anh Vũ Tuấn i Hiếu Trần Bá. "TỔNG QUAN VỀ TỔNG HỢP XANH NANO BẠC SỬ DỤNG CHIẾT XUẤT THỰC VẬT VÀ ỨNG DỤNG TRONG LĨNH VỰC Y - DƯỢC". VietNam Military Medical Unisversity 47, nr 04-2022 (maj 2022): 18–29. http://dx.doi.org/10.56535/jmpm.v2022050402.
Pełny tekst źródłaSoni, Namita, i Soam Prakash. "Green Nanoparticles for Mosquito Control". Scientific World Journal 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/496362.
Pełny tekst źródłaJia, Yu, Yuji Hotta, Kimiyasu Sato, Koji Watari i Yoshinori Kanno. "Gelcasting of Mechanochemically Synthesized Hydroxyapatite". Key Engineering Materials 280-283 (luty 2007): 1555–58. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1555.
Pełny tekst źródłaFikroh, Retno Aliyatul, Sabirin Matsjeh, Chairil Anwar i Beta Achromi Nurohmah. "GREEN SYNTHESIS OF HALOGEN SUBSTITUTED CHALCONE AGAINST CERVICAL CANCER (HeLa) CELL LINES". INSECTA: Integrative Science Education and Teaching Activity Journal 4, nr 1 (31.05.2023): 1–8. http://dx.doi.org/10.21154/insecta.v4i1.5876.
Pełny tekst źródłaWidatalla, Hiba Abbas, Layla Fathi Yassin, Ayat Ahmed Alrasheid, Shimaa Abdel Rahman Ahmed, Marvit Osman Widdatallah, Sahar Hussein Eltilib i Alaa Abdulmoneim Mohamed. "Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity". Nanoscale Advances 4, nr 3 (2022): 911–15. http://dx.doi.org/10.1039/d1na00509j.
Pełny tekst źródłaSenthilkumar, P., S. Rashmitha, Priscilla Veera, C. Ignatious, C. SaiPriya i Antony Samrot. "Antibacterial Activity of Neem Extract and its Green Synthesized Silver Nanoparticles against Pseudomonas aeruginosa". Journal of Pure and Applied Microbiology 12, nr 2 (30.06.2018): 969–74. http://dx.doi.org/10.22207/jpam.12.2.60.
Pełny tekst źródłaRaji, Kaviyarasan, Vadivel Ramanan i Perumal Ramamurthy. "Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au3+ ions in aqueous medium and in in vitro multicolor cell imaging". New Journal of Chemistry 43, nr 29 (2019): 11710–19. http://dx.doi.org/10.1039/c9nj02590a.
Pełny tekst źródłaSharma, Arun Kumar, Kiran Rana, Sita Shrestha, Hari Bhakta Oli i Deval Prasad Bhattarai. "A comparative Study on Synthesis, Characterization and Antibacterial Activity of Green vis-a-vis Chemically Synthesized Silver Nanoparticles". Amrit Research Journal 3, nr 01 (23.12.2022): 75–83. http://dx.doi.org/10.3126/arj.v3i01.50499.
Pełny tekst źródłaBarman, Subhodeep, Rahul Das, Biplab Kumar Mandal, Suranjan Sikdar i Abhijit Biswas. "Elastic properties of green synthesized Al0.15Zn0.85O nano-discs". Materials Today: Proceedings 43 (2021): 3862–66. http://dx.doi.org/10.1016/j.matpr.2020.12.1178.
Pełny tekst źródłaEmam, Hossam E. "Accessibility of green synthesized nanopalladium in water treatment". Results in Engineering 15 (wrzesień 2022): 100500. http://dx.doi.org/10.1016/j.rineng.2022.100500.
Pełny tekst źródłaChandra Sekhar Boyapati, Purna, Kolla Srinivas i Syed Akhil. "Green synthesized graphene-hydroxyapatite nanocomposites for bioimplant applications". Materials Letters 327 (listopad 2022): 133059. http://dx.doi.org/10.1016/j.matlet.2022.133059.
Pełny tekst źródłaSingh, Tejasvi, Athira Jayaprakash, Mohammad Alsuwaidi i Asha Anish Madhavan. "Green synthesized gold nanoparticles with enhanced photocatalytic activity". Materials Today: Proceedings 42 (2021): 1166–69. http://dx.doi.org/10.1016/j.matpr.2020.12.531.
Pełny tekst źródłaDaniel, S. C. G., J. Abirami, S. Kumaran i M. Sivakumar. "Microbicidal Tissue Paper Using Green Synthesized Silver Nanoparticles". Current Nanoscience 11, nr 1 (1.12.2014): 64–68. http://dx.doi.org/10.2174/1573413710666140909211129.
Pełny tekst źródłaRoy, Swarup. "Green Synthesized Gold Nanoparticles: Study of Antimicrobial Activity". Journal of Bionanoscience 11, nr 2 (1.04.2017): 131–35. http://dx.doi.org/10.1166/jbns.2017.1432.
Pełny tekst źródłaMahmud, Sakil, Md Nahid Pervez, Mst Zakia Sultana, Md Ahsan Habib i Hui-Hong Liu. "Wool Functionalization by Using Green Synthesized Silver Nanoparticles". Oriental Journal of Chemistry 33, nr 5 (25.10.2017): 2198–208. http://dx.doi.org/10.13005/ojc/330507.
Pełny tekst źródłaRajamani, Ranjithkumar, Selvam Kuppusamy i M. Shanmugavadivu. "Antibacterial Textile Finishing via Green Synthesized Silver Nanoparticles". Journal of Green Science and Technology 1, nr 2 (1.12.2013): 111–13. http://dx.doi.org/10.1166/jgst.2013.1025.
Pełny tekst źródłaIqbal, Muhammad, Naveed Iqbal Raja, Mubashir Hussain, Rashid Iqbal, Sunbal Khalil Chaudhari, Muhammad Asim Sultan, Ahmed Muneeb i Muhammad Ejaz. "Morphological Fabrication of Immobilized Green Synthesized Silver Nanoparticles". Nanoscience and Nanotechnology Letters 10, nr 11 (1.11.2018): 1508–14. http://dx.doi.org/10.1166/nnl.2018.2818.
Pełny tekst źródłaSharma, A. K., C. A. Pawar, N. R. Prasad, M. A. Yewale i D. B. Kamble. "Antimicrobial efficacy of green synthesized iron oxide nanoparticles". Materials Research Express 5, nr 7 (4.07.2018): 075402. http://dx.doi.org/10.1088/2053-1591/aacf16.
Pełny tekst źródłaSiegel, Jakub, Kateřina Kolářová, Vladimíra Vosmanská, Silvie Rimpelová, Jindřich Leitner i Václav Švorčík. "Antibacterial properties of green-synthesized noble metal nanoparticles". Materials Letters 113 (grudzień 2013): 59–62. http://dx.doi.org/10.1016/j.matlet.2013.09.047.
Pełny tekst źródłaKumari, Sapana, Bhagat Ram, Dharamender Kumar, Sunita Ranote i Ghanshyam S. Chauhan. "Nanoparticles of oxidized-cellulose synthesized by green method". Materials Science for Energy Technologies 1, nr 1 (czerwiec 2018): 22–28. http://dx.doi.org/10.1016/j.mset.2018.04.003.
Pełny tekst źródłaKhan, Zia Ul Haq, Amjad Khan, Yongmei Chen, Noor S. Shah, Nawshad Muhammad, Arif Ullah Khan, Kamran Tahir i in. "Biomedical applications of green synthesized Nobel metal nanoparticles". Journal of Photochemistry and Photobiology B: Biology 173 (sierpień 2017): 150–64. http://dx.doi.org/10.1016/j.jphotobiol.2017.05.034.
Pełny tekst źródłaWang, Yu, i Hao Gong. "Cu2ZnSnS4 synthesized through a green and economic process". Journal of Alloys and Compounds 509, nr 40 (październik 2011): 9627–30. http://dx.doi.org/10.1016/j.jallcom.2011.07.041.
Pełny tekst źródłaSmitha, S. L., K. G. Gopchandran, Nimisha R. Nair, K. Madhavan Nampoothiri i T. R. Ravindran. "SERS and Antibacterial Active Green Synthesized Gold Nanoparticles". Plasmonics 7, nr 3 (2.03.2012): 515–24. http://dx.doi.org/10.1007/s11468-012-9337-5.
Pełny tekst źródłaDeb, Sujata, P. K. Kalita i P. Datta. "Opto-Electronic Properties of Green Synthesized ZnS Nanostructures". International Journal of Nanoscience 17, nr 04 (8.07.2018): 1760032. http://dx.doi.org/10.1142/s0219581x17600328.
Pełny tekst źródłaBiresaw, Samuel Shiferaw, Samrawit Mekonnen Damte i Pankaj Taneja. "Green Synthesized Silver Nanoparticles: A Promising Anticancer Agent". International Journal of Nanoscience 19, nr 04 (14.02.2020): 1950027. http://dx.doi.org/10.1142/s0219581x19500273.
Pełny tekst źródłaCETİNER, Suat, Şeyma KANARA, Fatih IŞIK i Neslihan OKYAY. "ELECTROCONDUCTIVE POLYAMIDE FIBERS WITH GREEN SYNTHESIZED SILVER NANOPARTICLES". Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 25, nr 4 (3.12.2022): 643–54. http://dx.doi.org/10.17780/ksujes.1149666.
Pełny tekst źródłaMarimuthu, Sampath, Abdul Abdul Rahuman, Govindasamy Rajakumar, Thirunavukkarasu Santhoshkumar, Arivarasan Vishnu Kirthi, Chidambaram Jayaseelan, Asokan Bagavan, Abdul Abduz Zahir, Gandhi Elango i Chinnaperumal Kamaraj. "Evaluation of green synthesized silver nanoparticles against parasites". Parasitology Research 108, nr 6 (22.12.2010): 1541–49. http://dx.doi.org/10.1007/s00436-010-2212-4.
Pełny tekst źródłaYan, Lei, Yan Lin Yu i Dan Xiao. "Glutathione-Directed Green Synthesis of Ag Nanoclusters with Highly Fluorescence". Key Engineering Materials 727 (styczeń 2017): 297–302. http://dx.doi.org/10.4028/www.scientific.net/kem.727.297.
Pełny tekst źródłaSonitia, Isnanda, Ngurah Ayu Ketut Umiati i Agus Subagio. "Fabrication of CuONPs using Tridax Procumbens Leaf Extract as Material Antibacterial with Green Synthesis Method". International Journal of Research and Review 10, nr 5 (27.05.2023): 560–65. http://dx.doi.org/10.52403/ijrr.20230566.
Pełny tekst źródłaLakshmi, Tulasi S., Swamy AVVS, Peddi Pavani i Rani N. Usha. "Green adeptness in the synthesis and stabilization of copper nanoparticles using aqueous root extract of Schrebera swietenioides Roxb, and its catalytic application". Journal of medical pharmaceutical and allied sciences 11, nr 1 (30.01.2022): 4233–40. http://dx.doi.org/10.55522/jmpas.v11i1.2416.
Pełny tekst źródłaChoi, Jeong, Hyon Jung, Yeon Baek, Bo Kim, Min Lee, Hyeong Kim i Suhng Kim. "Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria". Nanomaterials 11, nr 1 (14.01.2021): 205. http://dx.doi.org/10.3390/nano11010205.
Pełny tekst źródła