Gotowa bibliografia na temat „Green Chemistry Separation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Green Chemistry Separation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Green Chemistry Separation"
Rogers, Luke, i Klavs F. Jensen. "Continuous manufacturing – the Green Chemistry promise?" Green Chemistry 21, nr 13 (2019): 3481–98. http://dx.doi.org/10.1039/c9gc00773c.
Pełny tekst źródłaClark, James H. "Catalysis for green chemistry". Pure and Applied Chemistry 73, nr 1 (1.01.2001): 103–11. http://dx.doi.org/10.1351/pac200173010103.
Pełny tekst źródłaSahoo, Tejaswini, Jagannath Panda, Jnanaranjan Sahu, Dayananda Sarangi, Sunil K. Sahoo, Braja B. Nanda i Rojalin Sahu. "Green Solvent: Green Shadow on Chemical Synthesis". Current Organic Synthesis 17, nr 6 (25.09.2020): 426–39. http://dx.doi.org/10.2174/1570179417666200506102535.
Pełny tekst źródłaNamieśnik, Jacek. "Green analytical chemistry - Some remarks". Journal of Separation Science 24, nr 2 (1.02.2001): 151–53. http://dx.doi.org/10.1002/1615-9314(20010201)24:2<151::aid-jssc151>3.0.co;2-4.
Pełny tekst źródłaDembek, Mikołaj, i Szymon Bocian. "Stationary Phases for Green Liquid Chromatography". Materials 15, nr 2 (6.01.2022): 419. http://dx.doi.org/10.3390/ma15020419.
Pełny tekst źródłaSagandykova, Gulyaim, Michał Szumski i Bogusław Buszewski. "How much separation sciences fit in the green chemistry canoe?" Current Opinion in Green and Sustainable Chemistry 30 (sierpień 2021): 100495. http://dx.doi.org/10.1016/j.cogsc.2021.100495.
Pełny tekst źródłaDonato, Laura, Imen Iben Nasser, Mustapha Majdoub i Enrico Drioli. "Green Chemistry and Molecularly Imprinted Membranes". Membranes 12, nr 5 (27.04.2022): 472. http://dx.doi.org/10.3390/membranes12050472.
Pełny tekst źródłaZhang, Pengrui, Mingyong Wang, Jinhe Sun, Fei Shao, Yongzhong Jia i Yan Jing. "Lithium Isotope Green Separation Using Water Scrubbing". Chemistry Letters 48, nr 12 (5.12.2019): 1541–43. http://dx.doi.org/10.1246/cl.190669.
Pełny tekst źródłaKoel, Mihkel, i Mihkel Kaljurand. "Application of the principles of green chemistry in analytical chemistry". Pure and Applied Chemistry 78, nr 11 (1.01.2006): 1993–2002. http://dx.doi.org/10.1351/pac200678111993.
Pełny tekst źródłaRichter, Steffi. "Green Separation Processes - Fundamentals and Applications". Environmental Science and Pollution Research - International 13, nr 2 (marzec 2006): 145. http://dx.doi.org/10.1065/espr2006.02.005.
Pełny tekst źródłaRozprawy doktorskie na temat "Green Chemistry Separation"
Beilke, Michael C. "The Development of Nanomaterials and "Green" Methods for Separation Science". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1448475540.
Pełny tekst źródłaTrujillo, Rebollo Andres. "ROLE OF BRILLIANT GREEN ON THE DETECTION AND SEPARATION OF NON-CHROMOPHORIC ANALYTES BY REVERSED-PHASE LIQUID CHROMATOGRAPHY (DIMERIZATION)". Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275434.
Pełny tekst źródłaDonaldson, Megan Elizabeth. "Development and application of novel solvents for sustainable reactions and separations". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24749.
Pełny tekst źródłaCommittee Chair: Charles A. Eckert; Committee Co-Chair: Charles L. Liotta; Committee Member: Christopher W. Jones; Committee Member: Facundo M. Fernandez; Committee Member: Thomas F. Fuller.
Wuethrich, A. "Green sample preparation in analytical separation sciences : electrophoretic concentration". Thesis, 2016. https://eprints.utas.edu.au/23488/1/Wuethrich_whole_thesis.pdf.
Pełny tekst źródłaAlhazmi, Banan O. "Interfacially Polymerized Thin-Film Composite Membranes Based on Biophenolic Material for Liquid Separation". Thesis, 2020. http://hdl.handle.net/10754/664380.
Pełny tekst źródłaSilva, Ana Francisca Osório de Almeida Coelho e. "Extraction and separation of drugs using alternative solvents". Doctoral thesis, 2018. http://hdl.handle.net/10773/25788.
Pełny tekst źródłaOs processos de produção da indústria química e relacionadas baseiam-se no uso de solventes orgânicos voláteis, gerando quantidades elevadas de resíduos perigosos. Durante as últimas décadas, têm sido realizados inúmeros esforços para modificar os processos químicos tendo em conta os princípios da Química Verde, Sustentabilidade e, mais recentemente, da Economia Circular. Esta tese pretende solucionar dois importantes desafios da indústria farmacêutica, a valorização de resíduos farmacêuticos e a separação de enantiómeros, utilizando duas classes de solventes alternativos, em particular, os Líquidos Iónicos (LIs) e os Solventes Eutéticos Profundos. No âmbito do conceito da Economia Circular e na procura de uma alternativa à estratégia atualmente utilizada (i.e., incineração), novas estratégias para a valorização de resíduos farmacêuticos domésticos (medicamentos não usados e/ou fora da validade) são apresentadas. Dado que cerca de 90 % dos princípios ativos num medicamento fora do prazo permanecem no seu estado ativo, é aqui sugerida a recuperação de fármacos a partir de resíduos farmacêuticos utilizando processos de extração com LIs. Os processos de separação dos princípios ativos de fármacos a partir destes resíduos requerem uma etapa inicial de extração sólido-líquido, desenvolvida neste trabalho pelo uso de diferentes LIs, reconhecidos pelo seu elevado poder solvente para uma larga gama de compostos/biomoléculas. A etapa de separação dos princípios ativos após a sua recuperação dos resíduos foi estudada pela aplicação de sistemas aquosos bifásicos (SABs) e sistemas de partição de três fases aquosas igualmente constituídos por LIs. Por sua vez, a etapa de isolamento dos princípios ativos após a sua separação foi desenvolvida pela adição de anti-solventes devidamente selecionados. O desafio de lidar com misturas racémicas e com as atividades biológicas diferenciadas que os enantiómeros geralmente apresentam foi investigado nesta tese. As duas práticas mais comuns na obtenção de enantiómeros puros são a síntese assimétrica e a separação de racematos. Apesar da síntese assimétrica ser considerada a abordagem mais poderosa, esta é limitada pelos elevados custos e complexidade tecnológica. A separação de racematos, por sua vez, representa uma alternativa mais flexível e simples do ponto de vista operacional e de custos. Neste contexto, o uso de SABs formados por LIs quirais foi considerado neste trabalho como uma alternativa na separação de misturas recémicas. Dois conjuntos distintos de LIs quirais, um com quiralidade no catião e o segundo com quiralidade no anião foram sintetizados e aplicados na separação de enantiómeros. Assim, e após caracterização dos diagramas de fase para os diferentes SABs (LI quiral + sal, LI quiral + polímero), foi possível avaliar a sua enantioseletividade na separação dos enantiómeros do ácido mandélico, aplicado neste trabalho como mistura racémica modelo. Numa segunda abordagem, a possibilidade de implementação de solventes eutécticos profundos como solventes quirais foi investigada pelo estudo do impacto da quiralidade no diagrama de equilíbrio sólido-líquido.
Programa Doutoral em Engenharia Química
Nag, Shubhadeep. "Novel and Fundamental Studies of Separation Methods Leading to Very High Degree of Separation of Molecular Mixtures and Related Studies". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5224.
Pełny tekst źródłaInstitute Scholarship (Ministry of Education, Govt. of India)
Yavuz, Cafer Tayyar. "Accessible and green manufacturing of magnetite (ferrous ferric oxide) nanocrystals and their use in magnetic separations". Thesis, 2008. http://hdl.handle.net/1911/22266.
Pełny tekst źródłaKsiążki na temat "Green Chemistry Separation"
M, Afonso Carlos A., i Crespo João G, red. Green separation processes: Fundamentals and applications. Weinheim: Wiley, 2005.
Znajdź pełny tekst źródłaGreen vegetable oil processing. Urbana, Illinois: AOCS Press, 2014.
Znajdź pełny tekst źródłaFarr, Walter E. Green vegetable oil processing. Urbana, IL: AOCS Press, 2012.
Znajdź pełny tekst źródłaIndustrial catalysis and separations: Innovations for process intensification. Toronto: Apple Academic Press, 2015.
Znajdź pełny tekst źródłaAsl, Ali Haghighi, i Maryam Khajenoori. Green Extraction in Separation Technology. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaAsl, Ali Haghighi, i Maryam Khajenoori. Green Extraction in Separation Technology. CRC Press LLC, 2021.
Znajdź pełny tekst źródłaAsl, Ali Haghighi, i Maryam Khajenoori. Green Extraction in Separation Technology. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaAnastas, Paul T., Carlos A. M. Afonso i João Pedro G. Crespo. Green Separation Processes: Fundamentals and Applications. Wiley & Sons, Incorporated, John, 2006.
Znajdź pełny tekst źródłaGreen Extraction in Separation Technology. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaAsl, Ali Haghighi, i Maryam Khajenoori. Green Extraction in Separation Technology. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Green Chemistry Separation"
Kidwai, Mazaahir, i Richa Mohan. "Combinatorial Chemistry on Solid Phases". W Green Separation Processes, 89–102. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606602.ch2c.
Pełny tekst źródłaClark, James H. "Green Chemistry and Environmentally Friendly Technologies". W Green Separation Processes, 1–18. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606602.ch1a.
Pełny tekst źródłaKaljurand, Mihkel, i Mihkel Koel. "Chapter 7. Green Analytical Separation Methods". W Green Chemistry Series, 168–98. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849732963-00168.
Pełny tekst źródłaWang, Shurong, Junhao Chen, Fan Zhang i Yurong Wang. "CHAPTER 6. Characterization and Separation of Bio-Oil". W Green Chemistry Series, 96–116. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010245-00096.
Pełny tekst źródłaLiu, Yu, i Ji Chen. "Ionic Liquids for Metal Ion Separation". W Green Chemistry and Sustainable Technology, 67–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48520-0_4.
Pełny tekst źródłaVasiloiu, Maria, i Katharina Bica. "Chiral Ionic Liquids in Separation Sciences". W Green Chemistry and Sustainable Technology, 167–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48520-0_8.
Pełny tekst źródłaBrown, Leslie, Martyn J. Earle, Manuela A. Gilea, Natalia V. Plechkova i Kenneth R. Seddon. "Ionic Liquid–Liquid Chromatography: A Novel Separation Method". W Green Chemistry and Sustainable Technology, 167–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35245-5_7.
Pełny tekst źródłaLuque de Castro, María Dolores, i Miguel Alcaide Molina. "Green Sample Preparation with Non-Chromatographic Separation Techniques". W Handbook of Green Analytical Chemistry, 125–51. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119940722.ch8.
Pełny tekst źródłaRodríguez, Héctor. "Ionic Liquids in the Context of Separation Processes". W Green Chemistry and Sustainable Technology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48520-0_1.
Pełny tekst źródłaCapela, Emanuel V., João A. P. Coutinho i Mara G. Freire. "Application of Ionic Liquids in Separation and Fractionation Processes". W Green Chemistry and Chemical Engineering, 637–65. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9060-3_1005.
Pełny tekst źródłaStreszczenia konferencji na temat "Green Chemistry Separation"
Angga, Stevin Carolius, Dias Septiana, Suci Amalia, Warsito, Elvina Dhiaul Iftitah i Akhmad Sabarudin. "Preparation and utilization of monolithic column as HPLC stationary phase for alkyl benzene separation with low mobile phase usage". W THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082411.
Pełny tekst źródłaCurran, K., i M. Davies. "Spectral Intensity Mapping and Analysis of Dyed Microflows". W ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2333.
Pełny tekst źródłaNess, Giulia, Ken Stuart Sorbie, Ali Hassan Al Mesmari i Shehadeh Masalmeh. "The Impact of CCUS for Improved Oil Recovery on CaCO3 Scaling Potential of Produced Fluids". W SPE EuropEC - Europe Energy Conference featured at the 83rd EAGE Annual Conference & Exhibition. SPE, 2022. http://dx.doi.org/10.2118/209676-ms.
Pełny tekst źródła