Artykuły w czasopismach na temat „Graphyne networks”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphyne networks”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yang, Yu Lin, Zhe Yong Fan, Ning Wei i Yong Ping Zheng. "Mechanical Properties of Hydrogen Functionalized Graphyne - A Molecular Dynamics Investigation". Advanced Materials Research 472-475 (luty 2012): 1813–17. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.1813.
Pełny tekst źródłaHaley, Michael M. "Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures". Pure and Applied Chemistry 80, nr 3 (1.01.2008): 519–32. http://dx.doi.org/10.1351/pac200880030519.
Pełny tekst źródłaChandra Shekar, Sarap, i Rotti Srinivasamurthy Swathi. "Molecular switching on graphyne and graphdiyne: Realizing functional carbon networks in synergy with graphene". Carbon 126 (styczeń 2018): 489–99. http://dx.doi.org/10.1016/j.carbon.2017.10.049.
Pełny tekst źródłaDegabriele, Edera P., James N. Grima-Cornish, Daphne Attard, Roberto Caruana-Gauci, Ruben Gatt, Kenneth E. Evans i Joseph N. Grima. "On the Mechanical Properties of Graphyne, Graphdiyne, and Other Poly(Phenylacetylene) Networks". physica status solidi (b) 254, nr 12 (27.11.2017): 1700380. http://dx.doi.org/10.1002/pssb.201700380.
Pełny tekst źródłaKehoe, Joshua M., James H. Kiley, Jamieson J. English, Charles A. Johnson, Ryan C. Petersen i Michael M. Haley. "Carbon Networks Based on Dehydrobenzoannulenes. 3. Synthesis of Graphyne Substructures1". Organic Letters 2, nr 7 (kwiecień 2000): 969–72. http://dx.doi.org/10.1021/ol005623w.
Pełny tekst źródłaYang, Zechao, Lukas Fromm, Tim Sander, Julian Gebhardt, Tobias A. Schaub, Andreas Görling, Milan Kivala i Sabine Maier. "On‐Surface Assembly of Hydrogen‐ and Halogen‐Bonded Supramolecular Graphyne‐Like Networks". Angewandte Chemie 132, nr 24 (kwiecień 2020): 9636–42. http://dx.doi.org/10.1002/ange.201916708.
Pełny tekst źródłaYang, Zechao, Lukas Fromm, Tim Sander, Julian Gebhardt, Tobias A. Schaub, Andreas Görling, Milan Kivala i Sabine Maier. "On‐Surface Assembly of Hydrogen‐ and Halogen‐Bonded Supramolecular Graphyne‐Like Networks". Angewandte Chemie International Edition 59, nr 24 (kwiecień 2020): 9549–55. http://dx.doi.org/10.1002/anie.201916708.
Pełny tekst źródłaKehoe, Joshua M., James H. Kiley, Jamieson J. English, Charles A. Johnson, Ryan C. Petersen i Michael M. Haley. "ChemInform Abstract: Carbon Networks Based on Dehydrobenzoannulenes. Part 3. Synthesis of Graphyne Substructures." ChemInform 31, nr 27 (7.06.2010): no. http://dx.doi.org/10.1002/chin.200027097.
Pełny tekst źródłaJohnson, Charles A., Yunyi Lu i Michael M. Haley. "Carbon Networks Based on Benzocyclynes. 6. Synthesis of Graphyne Substructures via Directed Alkyne Metathesis§". Organic Letters 9, nr 19 (wrzesień 2007): 3725–28. http://dx.doi.org/10.1021/ol7014253.
Pełny tekst źródłaYang, Zechao, Tim Sander, Julian Gebhardt, Tobias A. Schaub, Jörg Schönamsgruber, Himadri R. Soni, Andreas Görling, Milan Kivala i Sabine Maier. "Metalated Graphyne-Based Networks as Two-Dimensional Materials: Crystallization, Topological Defects, Delocalized Electronic States, and Site-Specific Doping". ACS Nano 14, nr 12 (25.11.2020): 16887–96. http://dx.doi.org/10.1021/acsnano.0c05865.
Pełny tekst źródłaCzajka, Michael, Robert A. Shanks i Ing Kong. "Preparation of graphene and inclusion in composites with poly(styrene-b-butadiene-b-styrene)". Science and Engineering of Composite Materials 22, nr 1 (1.01.2015): 7–16. http://dx.doi.org/10.1515/secm-2013-0119.
Pełny tekst źródłaWang, Ziming, Yiyang Cao, Decai Pan i Sen Hu. "Vertically Aligned and Interconnected Graphite and Graphene Oxide Networks Leading to Enhanced Thermal Conductivity of Polymer Composites". Polymers 12, nr 5 (14.05.2020): 1121. http://dx.doi.org/10.3390/polym12051121.
Pełny tekst źródłaSuh, JY, SE Shin i DH Bae. "Electrical properties of polytetrafluoroethylene/few-layer graphene composites fabricated by solid-state processing". Journal of Composite Materials 51, nr 18 (13.10.2016): 2565–73. http://dx.doi.org/10.1177/0021998316674349.
Pełny tekst źródłaTarannum, Fatema, Swapneel S. Danayat, Avinash Nayal, Rajmohan Muthaiah, Roshan Sameer Annam i Jivtesh Garg. "Large Enhancement in Thermal Conductivity of Solvent−Cast Expanded Graphite/Polyetherimide Composites". Nanomaterials 12, nr 11 (30.05.2022): 1877. http://dx.doi.org/10.3390/nano12111877.
Pełny tekst źródłaPolyakova, Polina V., i Julia A. Baimova. "Mechanical Properties of Graphene Networks under Compression: A Molecular Dynamics Simulation". International Journal of Molecular Sciences 24, nr 7 (3.04.2023): 6691. http://dx.doi.org/10.3390/ijms24076691.
Pełny tekst źródłaEl-Refaey, Ahmed, Yoshihiro Ito i Masuki Kawamoto. "Nanocomposite Hydrogels Containing Few-Layer Graphene Sheets Prepared through Noncovalent Exfoliation Show Improved Mechanical Properties". Nanomaterials 12, nr 18 (9.09.2022): 3129. http://dx.doi.org/10.3390/nano12183129.
Pełny tekst źródłaLevchenko, Igor, Jinghua Fang, Kostya (Ken) Ostrikov, Ludovico Lorello i Michael Keidar. "Morphological Characterization of Graphene Flake Networks Using Minkowski Functionals". Graphene 05, nr 01 (2016): 25–34. http://dx.doi.org/10.4236/graphene.2016.51003.
Pełny tekst źródłaP, Kavya, Soorya V. S i Binitha N. Narayanan. "Ball-Mill Assisted Green One-Pot Synthesis of ZnO/Graphene Nanocomposite for Selective Electrochemical Sensing of aquatic pollutant 4-nitrophenol". Teknomekanik 4, nr 2 (20.10.2021): 64–71. http://dx.doi.org/10.24036/teknomekanik.v4i2.10872.
Pełny tekst źródłaLI, HAI, i CHUNXIANG LU. "PREPARATION OF THREE-DIMENSIONAL GRAPHENE NETWORKS FOR USE AS ANODE OF LITHIUM ION BATTERIES". Functional Materials Letters 06, nr 06 (27.11.2013): 1350063. http://dx.doi.org/10.1142/s179360471350063x.
Pełny tekst źródłaEdward, Kaamil, Kabir Mamun, Sumesh Narayan, Mansour Assaf, David Rohindra i Upaka Rathnayake. "State-of-the-Art Graphene Synthesis Methods and Environmental Concerns". Applied and Environmental Soil Science 2023 (2.02.2023): 1–23. http://dx.doi.org/10.1155/2023/8475504.
Pełny tekst źródłaZhuang, Yuan, Yan Kong, Kun Han, Haotian Hao i Baoyou Shi. "A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial". New Journal of Chemistry 41, nr 24 (2017): 15127–35. http://dx.doi.org/10.1039/c7nj03392c.
Pełny tekst źródłaYin, Yanchao, Guoliang Zhang, Xianmang Xu, Peiyu Zhao i Liran Ma. "Intermolecular hydrogen bond ruptured by graphite with different lamellar number". Royal Society Open Science 8, nr 9 (wrzesień 2021): 210565. http://dx.doi.org/10.1098/rsos.210565.
Pełny tekst źródłaPawar, Pranav Bhagwan, Santosh K. Maurya, Ragvendra Pratap Chaudhary, Dhanashree Badhe, Sumit Saxena i Shobha Shukla. "Water Purification using Graphene Covered Micro-porous, Reusable Carbon Membrane". MRS Advances 1, nr 20 (2016): 1411–16. http://dx.doi.org/10.1557/adv.2016.199.
Pełny tekst źródłaLiu, Yuanjun, Qianqian Lu, Jing Wang i Xiaoming Zhao. "A Flexible Sandwich Structure Carbon Fiber Cloth with Resin Coating Composite Improves Electromagnetic Wave Absorption Performance at Low Frequency". Polymers 14, nr 2 (7.01.2022): 233. http://dx.doi.org/10.3390/polym14020233.
Pełny tekst źródłaRahayu, Endah Fitriani, Bunnari Bunnari i Andri Hardyansyah. "Reduction of Graphene Oxide: Controlled Synthesis by Microwave Irradiation". Molekul 15, nr 1 (23.03.2020): 56. http://dx.doi.org/10.20884/1.jm.2020.15.1.564.
Pełny tekst źródłaWang, XiaoDong, JianChao Wang, Swarup Biswas, Hyeok Kim i IlWoo Nam. "Mechanical, Electrical, and Piezoresistive Sensing Characteristics of Epoxy-Based Composites Incorporating Hybridized Networks of Carbon Nanotubes, Graphene, Carbon Nanofibers, or Graphite Nanoplatelets". Sensors 20, nr 7 (8.04.2020): 2094. http://dx.doi.org/10.3390/s20072094.
Pełny tekst źródłaPhan, Anh D., Cuong V. Nguyen, Pham T. Linh, Tran V. Huynh, Vu D. Lam, Anh-Tuan Le i Katsunori Wakabayashi. "Deep Learning for the Inverse Design of Mid-Infrared Graphene Plasmons". Crystals 10, nr 2 (19.02.2020): 125. http://dx.doi.org/10.3390/cryst10020125.
Pełny tekst źródłaIijima, Sumio. "Closed graphene nanostructures". Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 194–95. http://dx.doi.org/10.1017/s0424820100137343.
Pełny tekst źródłaNeri, Giulia, Enza Fazio, Placido Giuseppe Mineo, Angela Scala i Anna Piperno. "SERS Sensing Properties of New Graphene/Gold Nanocomposite". Nanomaterials 9, nr 9 (30.08.2019): 1236. http://dx.doi.org/10.3390/nano9091236.
Pełny tekst źródłaKumar, Harish V., Andrew J. Oyer, Kevin Y. S. Huang i Douglas H. Adamson. "Evolution of Heterogeneity and Chemical Functionality during the Oxidation of Graphite". Colloids and Interfaces 6, nr 3 (29.08.2022): 44. http://dx.doi.org/10.3390/colloids6030044.
Pełny tekst źródłaMilashius, Viktoria, Volodymyr Pavlyuk, Karolina Kluziak, Grygoriy Dmytriv i Helmut Ehrenberg. "LiBC3: a new borocarbide based on graphene and heterographene networks". Acta Crystallographica Section C Structural Chemistry 73, nr 11 (24.10.2017): 984–89. http://dx.doi.org/10.1107/s2053229617015182.
Pełny tekst źródłaWu, Jie, Saima Nazeer, Iftikhar Ahmed i Farkhanda Yasmin. "Study of Graphene Networks and Line Graph of Graphene Networks via NM-Polynomial and Topological Indices". Journal of Mathematics 2022 (12.11.2022): 1–42. http://dx.doi.org/10.1155/2022/3809806.
Pełny tekst źródłaDe Feyter, Steven. "(Invited, Digital Presentation) Molecular Self-assembly and Reactivity on 2D Layered Materials". ECS Meeting Abstracts MA2022-01, nr 12 (7.07.2022): 860. http://dx.doi.org/10.1149/ma2022-0112860mtgabs.
Pełny tekst źródłaZENG, BIN, YOUXIN LUO, QIYUAN LIU i WUJUN ZENG. "CARBON NANOTUBES/GRAPHENE THREE-DIMENSIONAL NETWORKS ARCHITECTURE LOADING WITH Ni AND ITS ADSORPTION PROPERTIES". Nano 09, nr 02 (luty 2014): 1450019. http://dx.doi.org/10.1142/s1793292014500192.
Pełny tekst źródłaMa, Yanfeng, i Yongsheng Chen. "Three-dimensional graphene networks: synthesis, properties and applications". National Science Review 2, nr 1 (17.12.2014): 40–53. http://dx.doi.org/10.1093/nsr/nwu072.
Pełny tekst źródłaWang, Jilong, Junhua Wei, Siheng Su i Jingjing Qiu. "Tough and Fatigue-Resistant Hydrogels with Triple Interpenetrating Networks". Journal of Nanomaterials 2019 (25.02.2019): 1–15. http://dx.doi.org/10.1155/2019/6923701.
Pełny tekst źródłaMarquez, Bicky A., Hugh Morison, Zhimu Guo, Matthew Filipovich, Paul R. Prucnal i Bhavin J. Shastri. "Graphene-based photonic synapse for multi wavelength neural networks". MRS Advances 5, nr 37-38 (2020): 1909–17. http://dx.doi.org/10.1557/adv.2020.327.
Pełny tekst źródłaGuo, Rui, Zechun Ren, Hongjie Bi, Min Xu i Liping Cai. "Electrical and Thermal Conductivity of Polylactic Acid (PLA)-Based Biocomposites by Incorporation of Nano-Graphite Fabricated with Fused Deposition Modeling". Polymers 11, nr 3 (22.03.2019): 549. http://dx.doi.org/10.3390/polym11030549.
Pełny tekst źródłaZiatdinov, Albert M., i Peter G. Skrylnik. "Films of Reduced Graphene Oxide with Percolation Networks of Nanographenes". Defect and Diffusion Forum 386 (wrzesień 2018): 388–93. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.388.
Pełny tekst źródłaShekar, S. Chandra, i R. S. Swathi. "Cation−π Interactions and Rattling Motion through Two-Dimensional Carbon Networks: Graphene vs Graphynes". Journal of Physical Chemistry C 119, nr 16 (8.04.2015): 8912–23. http://dx.doi.org/10.1021/jp512593r.
Pełny tekst źródłaBarbera, Vincenzina, Giulio Torrisi i Maurizio Galimberti. "Bionanocomposites based on a covalent network of chitosan and edge functionalized graphene layers". Journal of Applied Biomaterials & Functional Materials 19 (styczeń 2021): 228080002110174. http://dx.doi.org/10.1177/22808000211017431.
Pełny tekst źródłaPlanillo, Jordan, i Fabio Alves. "Fabrication and Characterization of Micrometer Scale Graphene Structures for Large-Scale Ultra-Thin Electronics". Electronics 11, nr 5 (1.03.2022): 752. http://dx.doi.org/10.3390/electronics11050752.
Pełny tekst źródłaGhosal, Supriya, i Debnarayan Jana. "Beyond T-graphene: Two-dimensional tetragonal allotropes and their potential applications". Applied Physics Reviews 9, nr 2 (czerwiec 2022): 021314. http://dx.doi.org/10.1063/5.0088275.
Pełny tekst źródłaKim, Sunnam, Sho Moriya, Sakura Maruki, Tuyoshi Fukaminato, Tomonari Ogata i Seiji Kurihara. "Adsorption and release on three-dimensional graphene oxide network structures". Royal Society Open Science 8, nr 5 (maj 2021): 201585. http://dx.doi.org/10.1098/rsos.201585.
Pełny tekst źródłaKardanMoghaddam, Hossein, Mohamadreza Maraki i Amir Rajaei. "Graphene-reinforced polymeric nanocomposites in computer and electronics industries". Facta universitatis - series: Electronics and Energetics 33, nr 3 (2020): 351–78. http://dx.doi.org/10.2298/fuee2003351m.
Pełny tekst źródłaZhang, Xiao, Jian Zheng, Yong Qiang Du i Chun Ming Zhang. "Three-Dimensional Graphite Filled Poly(Vinylidene Fluoride) Composites with Enhanced Strength and Thermal Conductivity". Key Engineering Materials 842 (maj 2020): 63–68. http://dx.doi.org/10.4028/www.scientific.net/kem.842.63.
Pełny tekst źródłaObrzut, Jan, Denis Pristinski i Mitra Yoonessi. "Optical and Electrical Properties of Graphene Percolated Networks from Liquid Exfoliation of Graphite". ECS Transactions 28, nr 5 (17.12.2019): 99–106. http://dx.doi.org/10.1149/1.3367941.
Pełny tekst źródłaWu, Qiupeng, Zhiheng Yu, Fengli Huang i Jinmei Gu. "Electrospun PA66/Graphene Fiber Films and Application on Flexible Triboelectric Nanogenerators". Materials 15, nr 15 (26.07.2022): 5191. http://dx.doi.org/10.3390/ma15155191.
Pełny tekst źródłaKandasamy, Senthil Kumar, Chandrasekaran Arumugam, A. S. Sajitha, Saggurthi Prabhakara Rao, Sangavi Selvaraj, Ragavi Vetrivel, Roobak Selvarajan i in. "Paradisiaca/Solanum Tuberosum Biowaste Composited with Graphene Oxide for Flexible Supercapacitor". Journal of New Materials for Electrochemical Systems 24, nr 1 (31.03.2021): 21–28. http://dx.doi.org/10.14447/jnmes.v24i1.a04.
Pełny tekst źródłaKim, Jaegyeong, Changil Oh, Changju Chae, Dae-Hoon Yeom, Jaeho Choi, Nahyeon Kim, Eun-Suok Oh i Jung Kyoo Lee. "3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries". Journal of Materials Chemistry A 3, nr 36 (2015): 18684–95. http://dx.doi.org/10.1039/c5ta04681e.
Pełny tekst źródła