Gotowa bibliografia na temat „Graphene Structure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene Structure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Graphene Structure"
Woellner, Cristiano Francisco, Pedro Alves da Silva Autreto i Douglas S. Galvao. "One Side-Graphene Hydrogenation (Graphone): Substrate Effects". MRS Advances 1, nr 20 (2016): 1429–34. http://dx.doi.org/10.1557/adv.2016.196.
Pełny tekst źródłaMurav’ev, V. V., i V. M. Mishchenka. "Ab-initio simulation of hydrogenated graphene properties". Doklady BGUIR 19, nr 8 (1.01.2022): 5–9. http://dx.doi.org/10.35596/1729-7648-2021-19-8-5-9.
Pełny tekst źródłaQu, Li-Hua, Xiao-Long Fu, Chong-Gui Zhong, Peng-Xia Zhou i Jian-Min Zhang. "Equibiaxial Strained Oxygen Adsorption on Pristine Graphene, Nitrogen/Boron Doped Graphene, and Defected Graphene". Materials 13, nr 21 (4.11.2020): 4945. http://dx.doi.org/10.3390/ma13214945.
Pełny tekst źródłaLee, Ji, Sung Kwon, Soonchul Kwon, Min Cho, Kwang Kim, Tae Han i Seung Lee. "Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach". Nanomaterials 9, nr 2 (15.02.2019): 268. http://dx.doi.org/10.3390/nano9020268.
Pełny tekst źródłaLiu, Li, i Chang Chun Zhou. "Preparation and Application of Grapheme". Applied Mechanics and Materials 670-671 (październik 2014): 127–29. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.127.
Pełny tekst źródłaRozhkov, M. A., A. L. Kolesnikova, I. Hussainova, M. A. Kaliteevskii, T. S. Orlova, Yu Yu Smirnov, I. S. Yasnikov, L. V. Zhigilei, V. E. Bougrov i A. E. Romanov. "Evolution of Dirac Cone in Disclinated Graphene". REVIEWS ON ADVANCED MATERIALS SCIENCE 57, nr 2 (1.07.2018): 137–42. http://dx.doi.org/10.1515/rams-2018-0057.
Pełny tekst źródłaColmiais, Ivo, Vitor Silva, Jérôme Borme, Pedro Alpuim i Paulo M. Mendes. "Extraction of Graphene’s RF Impedance through Thru-Reflect-Line Calibration". Micromachines 14, nr 1 (14.01.2023): 215. http://dx.doi.org/10.3390/mi14010215.
Pełny tekst źródłaWang, Xuan Lun, i Wei Jiu Huang. "Fabrication and Characterization of Graphene/Polyimide Nanocomposites". Advanced Materials Research 785-786 (wrzesień 2013): 138–44. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.138.
Pełny tekst źródłaRAO, C. N. R., K. S. SUBRAHMANYAM, H. S. S. RAMAKRISHNA MATTE i A. GOVINDARAJ. "GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES". Modern Physics Letters B 25, nr 07 (20.03.2011): 427–51. http://dx.doi.org/10.1142/s0217984911025961.
Pełny tekst źródłaRAO, C. N. R., K. S. SUBRAHMANYAM, H. S. S. RAMAKRISHNA MATTE, URMIMALA MAITRA, KOTA MOSES i A. GOVINDARAJ. "GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES". International Journal of Modern Physics B 25, nr 30 (10.12.2011): 4107–43. http://dx.doi.org/10.1142/s0217979211059358.
Pełny tekst źródłaRozprawy doktorskie na temat "Graphene Structure"
Nair, Rahul Raveendran. "Atomic structure and properties of graphene and novel graphene derivatives". Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527419.
Pełny tekst źródłaPierce, James Kevin. "Magnetic structure of chiral graphene nanoribbons". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57782.
Pełny tekst źródłaScience, Faculty of
Physics and Astronomy, Department of
Graduate
Pradhan, Siddharth. "Quantification of Graphene Oxide Structure Using an Improved Model". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342730902.
Pełny tekst źródłaWang, Jun, i 王俊. "Optical properties of graphene/GaN hybrid structure". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206660.
Pełny tekst źródłapublished_or_final_version
Physics
Master
Master of Philosophy
Pandey, Priyanka A. "Structure and applications of chemically modified graphene". Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55111/.
Pełny tekst źródłaThomas, Helen R. "The structure and reactivity of graphene oxide". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74090/.
Pełny tekst źródłaPlachinda, Pavel. "Electronic Properties and Structure of Functionalized Graphene". PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/585.
Pełny tekst źródłaWang, Zi. "Electronic structure and quantum transport in disordered graphene". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104783.
Pełny tekst źródłaLe graphène, une seule feuille de graphite, a de nombreuse propriétés électroniques et mécaniques intéressantes, et ce qui en fait une solution viable pour l'électronique de demain. Il reste le matériau le plus largement étudié en physique de la matière condensée en 2011. En raison des effets du désordre, de nombreux propriétés utiles du graphène prédite par la théorie n'apparaissent pas dans les systèmes du monde réel, et les effets exacts du désordre dans le graphène n'ont pas été étudiées à toute satisfaction. L'objectif de cette thèse est de fournir une étude premiers principes de l'effet du désordre introduit dans des nanostructures de graphène. Nous allons passer brièvement en revue les concepts de base de la théorie électronique de la matière condensée, suivie par une discussion plus détaillée sur la théorie de la fonctionnelle de la densité (DFT) qui est la théorie atomique la plus couramment appliquée pour la physique matériaux. Nous allons ensuite présenter la méthode LMTO, des de la DFT, qui est spécialisée dans le calcul des cristaux solides. LMTO est mathématiquement très efficace et est en mesure de traiter plus de quelques milliers d'atomes, tout en restant raisonnablement précise. Ces qualités font que la méthode LMTO est très utile pour l'analyse du transport quantique. Nous discuterons ensuite l'application du DFT est dans le formalisme de la fonction non-équilibre de Green de Keldysh (NEGF) pour traiter les systèmes non-équilibre, tels que le courant de charge. Enfin, dans NEGF-DFT, nous allons utiliser l'approximation du potentiel cohérent (CPA) et la correction non-équilibre de vertex (NVC) afin d'appliquer la théorie de la moyenne du désordre de configuration. Ce cadre théorique est ensuite appliquée à l'étude du transport quantique dans le graphène avec du désordre atomique. Nous allons étudier les effets de la substitution du bore (B) et de l'azote (N) dans le graphène connecté aux électrodes de graphène pure. Nous avons calculé le transport quantique des dispositifs de graphène en fonction de la concentration du désordre x, longueur du dispositif L, l'énergie E, et nos résultats suggèrent que le dopage affecte grandement les propriétés de transport quantique en induisant diffusion de maniere significante. En particulier, ceci est la première fois que la conductance en fonction de la concentration du dopage x est obtenue à partir de théorie premiers principes atomiques. Il est important de noter que la théorie de la NVC nous permet de déterminer directement la contribution de la diffusion à la conductance totale. étant donné que les atomes B et N les atomes sont situés de chaque côté du carbone dans le tableau périodique, il est intéressant de constater que la diffusion du désordre due à ces impuretés apparait presque parfaitement de chaque côté du niveau de Fermi dans le graphène. Un tel comportement peut être compris du point de vue de la charge des dopants.
Mohd, Halit Muhammad Khairulanwar Bin. "Processing, structure and properties of polyamide 6/graphene nanoplatelets nanocomposites". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/processing-structure-and-properties-of-polyamide-6graphene-nanoplatelets-nanocomposites(e879fdef-d5d4-4797-a865-58b61cb257d1).html.
Pełny tekst źródłaXian, Lede. "Electronic structure and interlayer coupling in twisted multilayer graphene". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51811.
Pełny tekst źródłaKsiążki na temat "Graphene Structure"
Enoki, Toshiaki, C. N. R. Rao i Swapan K. Pati. Graphene and its fascinating attributes. New Jersey: World Scientific, 2011.
Znajdź pełny tekst źródłaLi, Yutao. Electronic and plasmonic band structure engineering of graphene using superlattices. [New York, N.Y.?]: [publisher not identified], 2021.
Znajdź pełny tekst źródłaForsythe, Carlos. Fractal Hofstadter Band Structure in Patterned Dielectric Superlattice Graphene Systems. [New York, N.Y.?]: [publisher not identified], 2017.
Znajdź pełny tekst źródłaWu, Xin. Influence of Particle Beam Irradiation on the Structure and Properties of Graphene. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6457-9.
Pełny tekst źródłaA, Balandin Alexander, i Materials Research Society Meeting, red. Functional two-dimensional layered materials, from graphene to topological insulators: Symposium held April 25-29, 2011, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2012.
Znajdź pełny tekst źródłaThorpe, Yvonne. Graphing buildings and structures. Chicago, Ill: Heinemann Library, 2008.
Znajdź pełny tekst źródła1946-, Zabel H., Solin S. A. 1942- i Hwang D. M, red. Graphite intercalation compounds I: Structure and dynamics. Berlin: Springer-Verlag, 1990.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. i United States. Army Aviation Systems Command., red. Structure-to-property relationships in addition cured polymers. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaCenter, Lewis Research, i United States. Army Aviation Systems Command., red. Structure-to-property relationships in addition cured polymers. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Znajdź pełny tekst źródłaCenter, Lewis Research, i United States. Army Aviation Systems Command., red. Structure-to-property relationships in addition cured polymers. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Graphene Structure"
Gao, Wei. "Synthesis, Structure, and Characterizations". W Graphene Oxide, 1–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15500-5_1.
Pełny tekst źródłaYoung, Robert J. "Graphene and Graphene-Based Nanocomposites". W Structure and Multiscale Mechanics of Carbon Nanomaterials, 75–98. Vienna: Springer Vienna, 2016. http://dx.doi.org/10.1007/978-3-7091-1887-0_4.
Pełny tekst źródłaStewart, Derek A., i K. Andre Mkhoyan. "Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications". W Graphene Nanoelectronics, 435–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22984-8_14.
Pełny tekst źródłaDimiev, Ayrat M. "Mechanism of Formation and Chemical Structure of Graphene Oxide". W Graphene Oxide, 36–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch2.
Pełny tekst źródłaGrushevskaya, H. V., i G. G. Krylov. "Electronic Structure and Transport in Graphene". W Graphene Science Handbook, 117–32. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-9.
Pełny tekst źródłaJavad Azizli, Mohammad, Masoud Mokhtary, Mohammad Barghamadi i Katayoon Rezaeeparto. "Structure-Property Relationship of Graphene-Rubber Nanocomposite". W Graphene-Rubber Nanocomposites, 141–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003200444-6.
Pełny tekst źródłaLam, Kai-Tak, i Gengchiau Liang. "Electronic Structure of Bilayer Graphene Nanoribbon and Its Device Application: A Computational Study". W Graphene Nanoelectronics, 509–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22984-8_16.
Pełny tekst źródłaZheng, Qingbin, i Jang-Kyo Kim. "Synthesis, Structure, and Properties of Graphene and Graphene Oxide". W Graphene for Transparent Conductors, 29–94. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2769-2_2.
Pełny tekst źródłaKirane, Kedar, i Surita Bhatia. "Structure-Property Relationships for the Mechanical Behavior of Rubber-Graphene Nanocomposites". W Graphene-Rubber Nanocomposites, 109–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003200444-5.
Pełny tekst źródłaHartmann, Markus A., Melanie Todt i F. G. Rammerstorfer. "Atomistic and continuum modelling of graphene and graphene-derived carbon nanostructures". W Structure and Multiscale Mechanics of Carbon Nanomaterials, 135–79. Vienna: Springer Vienna, 2016. http://dx.doi.org/10.1007/978-3-7091-1887-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Graphene Structure"
Shuvo, Mohammad Arif Ishtiaque, Md Ashiqur Rahaman Khan, Miguel Mendoza, Matthew Garcia i Yirong Lin. "Synthesis and Characterization of Nanowire-Graphene Aerogel for Energy Storage Devices". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86431.
Pełny tekst źródłaKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem i Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production". W 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Pełny tekst źródłaKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem i Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production". W 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Pełny tekst źródłaZubko, I. Yu. "Exact solution for inner displacements of graphene lattice". W ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932929.
Pełny tekst źródłaZubko, I. Yu, i V. I. Kochurov. "Computation of graphene elastic moduli at low temperature". W ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932930.
Pełny tekst źródłaGuo, Qihang, Jinyu Zhang, Yu He, Jiahao Kang, He Qian, Yan Wang i Zhiping Yu. "The electronic structure of graphene nanomesh". W 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667678.
Pełny tekst źródłaVesely, S. L., A. A. Vesely i S. R. Dolci. "The Fine Structure Constant and Graphene". W 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017668.
Pełny tekst źródłaPeng, Liu, Bang Li, Xin Yan, Xia Zhang i Xiao-Min Ren. "Graphene/InAs nanowire composite structure photodetector". W Sixth Symposium on Novel Photoelectronic Detection Technology and Application, redaktorzy Huilin Jiang i Junhao Chu. SPIE, 2020. http://dx.doi.org/10.1117/12.2558432.
Pełny tekst źródłaShmavonyan, G. Sh, i A. R. Mailian. "Graphite Pencil Drawn Lines: A Nanomaterial or Few Layer Graphene/Graphite Layered Structure". W 2nd International Conference on Green Materials and Environmental Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/gmee-15.2015.4.
Pełny tekst źródłaZhang, Bin, Jingwei Zhang, Chengguo Liu i Zhi Peng Wu. "Graphene-based THz Antenna with A Graphene-metal CPW Feeding Structure". W 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). IEEE, 2018. http://dx.doi.org/10.1109/ucmmt45316.2018.9015773.
Pełny tekst źródłaRaporty organizacyjne na temat "Graphene Structure"
Plachinda, Pavel. Electronic Properties and Structure of Functionalized Graphene. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.585.
Pełny tekst źródłaGaillard, J. Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1395966.
Pełny tekst źródłaWang, Feng. Technical report on "BES Early Career. Control Graphene Electronic Structure for Energy Technology". Office of Scientific and Technical Information (OSTI), lipiec 2015. http://dx.doi.org/10.2172/1192236.
Pełny tekst źródłaFlynn, George W. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces. Office of Scientific and Technical Information (OSTI), luty 2015. http://dx.doi.org/10.2172/1170229.
Pełny tekst źródłaPisani, William, Dane Wedgeworth, Michael Roth, John Newman i Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), marzec 2023. http://dx.doi.org/10.21079/11681/46713.
Pełny tekst źródłaSzlufarska, Izabela, Dane Morgan i Todd Allen. Modeling Fission Product Sorption in Graphite Structures. Office of Scientific and Technical Information (OSTI), kwiecień 2013. http://dx.doi.org/10.2172/1082917.
Pełny tekst źródłaCarlisle, J. A., E. L. Shirley i E. A. Hudson. Probing the graphite band structure with resonant soft-x-ray fluorescence. Office of Scientific and Technical Information (OSTI), kwiecień 1997. http://dx.doi.org/10.2172/603582.
Pełny tekst źródłaRickard, N. D. STRUCTURAL DESIGN CRITERIA FOR REPLACEABLE GRAPHITE CORE ELEMENTS. Office of Scientific and Technical Information (OSTI), wrzesień 1989. http://dx.doi.org/10.2172/10197186.
Pełny tekst źródłaYahr, G. T., i D. G. O`Connor. Structural design criteria and design data for AVLIS graphite components. Office of Scientific and Technical Information (OSTI), wrzesień 1985. http://dx.doi.org/10.2172/711805.
Pełny tekst źródłaRobert L. Bratton i Tim D. Burchell. Status of ASME Section III Task Group on Graphite Support Core Structures. Office of Scientific and Technical Information (OSTI), sierpień 2005. http://dx.doi.org/10.2172/911242.
Pełny tekst źródła