Artykuły w czasopismach na temat „Graphene-Solvent Interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene-Solvent Interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Abahussain, Abdulaziz A. M., S. Z. J. Zaidi, M. H. Nazir, M. Raza, M. H. Nazir i S. Hassan. "A DFT Study of Graphene as a Drug Carrier for Gemcitabine Anticancer Drug". Journal of New Materials for Electrochemical Systems 25, nr 4 (31.12.2022): 234–39. http://dx.doi.org/10.14447/jnmes.v25i4.a02.
Pełny tekst źródłaLiang, Yanyu, Dongqing Wu, Xinliang Feng i Klaus Müllen. "Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions". Advanced Materials 21, nr 17 (4.05.2009): 1679–83. http://dx.doi.org/10.1002/adma.200803160.
Pełny tekst źródłaGraziano, Antimo, Shaffiq Jaffer i Mohini Sain. "Graphene oxide modification for enhancing high-density polyethylene properties: a comparison between solvent reaction and melt mixing". Journal of Polymer Engineering 39, nr 1 (19.12.2018): 85–93. http://dx.doi.org/10.1515/polyeng-2018-0106.
Pełny tekst źródłaBerisha, Avni. "Interactions between the Aryldiazonium Cations and Graphene Oxide: A DFT Study". Journal of Chemistry 2019 (26.02.2019): 1–5. http://dx.doi.org/10.1155/2019/5126071.
Pełny tekst źródłaArunachalam, Vaishali, i Sukumaran Vasudevan. "Graphene–Solvent Interactions in Nonaqueous Dispersions: 2D ROESY NMR Measurements and Molecular Dynamics Simulations". Journal of Physical Chemistry C 122, nr 3 (10.01.2018): 1881–88. http://dx.doi.org/10.1021/acs.jpcc.7b11138.
Pełny tekst źródłaCzajka, Michael, Robert A. Shanks i Ing Kong. "Preparation of graphene and inclusion in composites with poly(styrene-b-butadiene-b-styrene)". Science and Engineering of Composite Materials 22, nr 1 (1.01.2015): 7–16. http://dx.doi.org/10.1515/secm-2013-0119.
Pełny tekst źródłaMoni, Grace, Jiji Abraham, Chinchu Kurian, Ayarin Joseph i Soney C. George. "Effect of reduced graphene oxide on the solvent transport characteristics and sorption kinetics of fluoroelastomer nanocomposites". Physical Chemistry Chemical Physics 20, nr 26 (2018): 17909–17. http://dx.doi.org/10.1039/c8cp02411a.
Pełny tekst źródłaSon, Chang Yun, i Zhen-Gang Wang. "Image-charge effects on ion adsorption near aqueous interfaces". Proceedings of the National Academy of Sciences 118, nr 19 (4.05.2021): e2020615118. http://dx.doi.org/10.1073/pnas.2020615118.
Pełny tekst źródłaBorzehandani, Mostafa Yousefzadeh, Emilia Abdulmalek, Mohd Basyaruddin Abdul Rahman i Muhammad Alif Mohammad Latif. "Elucidating the Aromatic Properties of Covalent Organic Frameworks Surface for Enhanced Polar Solvent Adsorption". Polymers 13, nr 11 (3.06.2021): 1861. http://dx.doi.org/10.3390/polym13111861.
Pełny tekst źródłaAraya-Hermosilla, Esteban, Matteo Minichino, Virgilio Mattoli i Andrea Pucci. "Chemical and Temperature Sensors Based on Functionalized Reduced Graphene Oxide". Chemosensors 8, nr 2 (21.06.2020): 43. http://dx.doi.org/10.3390/chemosensors8020043.
Pełny tekst źródłaMohammadsalih, Zaid G., Beverley J. Inkson i Biqiong Chen. "Structure and Properties of Polystyrene-Co-Acrylonitrile/Graphene Oxide Nanocomposites". Journal of Composites Science 7, nr 6 (31.05.2023): 225. http://dx.doi.org/10.3390/jcs7060225.
Pełny tekst źródłaZhu, Jing, Binglin Lu, Shanshan Liu, Aifei Xu, Guifang Tang, Zhiyan Chen, Yuling Pan, Gangling Tang, Fei Yang i Yun Zhou. "Magnetic Graphene Dispersive Solid-Phase Extraction for the Determination of Phthalic Acid Esters in Flavoring Essences by Gas Chromatography Tandem Mass Spectrometry". Journal of Chromatographic Science 58, nr 8 (29.07.2020): 770–78. http://dx.doi.org/10.1093/chromsci/bmaa032.
Pełny tekst źródłaSohail, Uroosa, Faizan Ullah, Nur Hazimah Binti Zainal Arfan, Malai Haniti Sheikh Abdul Hamid, Tariq Mahmood, Nadeem S. Sheikh i Khurshid Ayub. "Transition Metal Sensing with Nitrogenated Holey Graphene: A First-Principles Investigation". Molecules 28, nr 10 (12.05.2023): 4060. http://dx.doi.org/10.3390/molecules28104060.
Pełny tekst źródłaYu, Li, Fei Ma, Liangxiao Zhang i Peiwu Li. "Determination of Aflatoxin B1 and B2 in Vegetable Oils Using Fe3O4/rGO Magnetic Solid Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence with Post-Column Photochemical Derivatization". Toxins 11, nr 11 (26.10.2019): 621. http://dx.doi.org/10.3390/toxins11110621.
Pełny tekst źródłaMahendran, R., D. Sridharan, K. Santhakumar i G. Gnanasekaran. "Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties". Journal of Nanoscience 2016 (13.07.2016): 1–8. http://dx.doi.org/10.1155/2016/6410295.
Pełny tekst źródłaMohamad, Sharifah, Shabnam Bakhshaei, Ninie Suhana Abdul Manan, N. A. Parmin i Siti Khalijah Mahmad Rozi. "Free Fatty Acid from Waste Palm Oil Functionalized Magnetic Nanoparticles Immobilized on Surface Graphene Oxide as a New Adsorbent for Simultaneously Detecting Hazardous Polycyclic Aromatic Hydrocarbons and Phthalate Esters in Food Extracts". Journal of Nanoscience and Nanotechnology 21, nr 11 (1.11.2021): 5522–34. http://dx.doi.org/10.1166/jnn.2021.19454.
Pełny tekst źródłaLi, Shuxuan, Can Li, Baowei Su, Michael Z. Hu, Xueli Gao i Congjie Gao. "Amino-functionalized graphene quantum dots (aGQDs)-embedded thin film nanocomposites for solvent resistant nanofiltration (SRNF) membranes based on covalence interactions". Journal of Membrane Science 588 (październik 2019): 117212. http://dx.doi.org/10.1016/j.memsci.2019.117212.
Pełny tekst źródłaShaik, Mohammed, Manawwer Alam, Syed Adil, Mufsir Kuniyil, Abdulrahman Al-Warthan, Mohammed Siddiqui, Muhammad Tahir, Joselito Labis i Mujeeb Khan. "Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites". Materials 12, nr 5 (28.02.2019): 711. http://dx.doi.org/10.3390/ma12050711.
Pełny tekst źródłaDíez-Pascual, Ana M. "Effect of Graphene Oxide on the Properties of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)". Polymers 13, nr 14 (7.07.2021): 2233. http://dx.doi.org/10.3390/polym13142233.
Pełny tekst źródłaMersal, Gaber A. M., I. S. Yahia i Hamdy S. El-Sheshtawy. "Lone pair Halogen (X2)…π Interactions Stabilizes Molecular Halogens (X2=I2, Br2, Cl2, and F2) on Reduced Graphene Oxide surface: Structural, Solvent Effect and optical properties". Journal of Molecular Structure 1244 (listopad 2021): 130963. http://dx.doi.org/10.1016/j.molstruc.2021.130963.
Pełny tekst źródłaTsai, Hsin-Yen, Munusamy Sathish Kumar, Balaraman Vedhanarayanan, Hsin-Hui Shen i Tsung-Wu Lin. "Urea-Based Deep Eutectic Solvent with Magnesium/Lithium Dual Ions as an Aqueous Electrolyte for High-Performance Battery-Supercapacitor Hybrid Devices". Batteries 9, nr 2 (18.01.2023): 69. http://dx.doi.org/10.3390/batteries9020069.
Pełny tekst źródłaManza, Hirasing T., Mangesh S. Dhore i Shankar Amalraj. "2D Covalent Interaction of Aminophenol Functionalized Graphene Oxide". ECS Transactions 107, nr 1 (24.04.2022): 16531–37. http://dx.doi.org/10.1149/10701.16531ecst.
Pełny tekst źródłaKim, Ho Shin, Sabrina M. Huang i Yaroslava G. Yingling. "Sequence dependent interaction of single stranded DNA with graphitic flakes: atomistic molecular dynamics simulations". MRS Advances 1, nr 25 (2016): 1883–89. http://dx.doi.org/10.1557/adv.2016.91.
Pełny tekst źródłaOh, Yuna, Hoi Kil Choi, Hana Jung, Jeong-Un Jin, Young-Kwan Kim, Nam-Ho You, Bon-Cheol Ku, Yonjig Kim i Jaesang Yu. "Analysis of the effect of organic solvent–sheet interfacial interaction on the exfoliation of sulfur-doped reduced graphene oxide sheets in a solvent system using molecular dynamics simulations". Physical Chemistry Chemical Physics 22, nr 36 (2020): 20665–72. http://dx.doi.org/10.1039/d0cp03498c.
Pełny tekst źródłade Oliveira, Matheus Mendes, Sven Forsberg, Linnéa Selegård i Danilo Justino Carastan. "The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles". Polymers 13, nr 23 (26.11.2021): 4128. http://dx.doi.org/10.3390/polym13234128.
Pełny tekst źródłaKadhim, Ishraq Abd Ulrazzaq. "Biocompatibility of Alginate -Graphene Oxide Film for Tissue Engineering Applications". Key Engineering Materials 900 (20.09.2021): 26–33. http://dx.doi.org/10.4028/www.scientific.net/kem.900.26.
Pełny tekst źródłaNeklyudov, Vadim V., Nail R. Khafizov, Igor A. Sedov i Ayrat M. Dimiev. "New insights into the solubility of graphene oxide in water and alcohols". Physical Chemistry Chemical Physics 19, nr 26 (2017): 17000–17008. http://dx.doi.org/10.1039/c7cp02303k.
Pełny tekst źródłaSahu, Sumit Ranjan, Mayanglambam Manolata Devi, Puspal Mukherjee, Pratik Sen i Krishanu Biswas. "Optical Property Characterization of Novel Graphene-X (X=Ag, Au and Cu) Nanoparticle Hybrids". Journal of Nanomaterials 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/232409.
Pełny tekst źródłaLashkari, Sima, Sima A. Lashkari i Rajinder Pal. "Ionic Liquid/Non-Ionic Surfactant Mixtures As Versatile, Non-Volatile Electrolytes: Double-Layer Capacitance and Conductivity". ECS Meeting Abstracts MA2022-01, nr 1 (7.07.2022): 5. http://dx.doi.org/10.1149/ma2022-0115mtgabs.
Pełny tekst źródłaIvaništšev, Vladislav, Trinidad Méndez-Morales, Ruth M. Lynden-Bell, Oscar Cabeza, Luis J. Gallego, Luis M. Varela i Maxim V. Fedorov. "Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid–graphene electrode interfaces". Physical Chemistry Chemical Physics 18, nr 2 (2016): 1302–10. http://dx.doi.org/10.1039/c5cp05973a.
Pełny tekst źródłaCharoeythornkhajhornchai, Pollawat, i Anongnat Somwangthanaroj. "Synthesis of Graphene Oxide Grafted with Epoxidized Natural Rubber via Aminosilane Linkage". Materials Science Forum 940 (grudzień 2018): 28–34. http://dx.doi.org/10.4028/www.scientific.net/msf.940.28.
Pełny tekst źródłaWang, Sijie, Gang Liu i Junwen Pu. "Enhancement of the strength of biocomposite films via graphene oxide modification". BioResources 13, nr 3 (5.07.2018): 6321–31. http://dx.doi.org/10.15376/biores.13.3.6321-6331.
Pełny tekst źródłaJin, Yezi, Zhijun Xu, Yanan Guo i Xiaoning Yang. "Molecular-Level Recognition of Interaction Mechanism between Graphene Oxides in Solvent Media". Journal of Physical Chemistry C 122, nr 7 (9.02.2018): 4063–72. http://dx.doi.org/10.1021/acs.jpcc.7b12017.
Pełny tekst źródłaNair, Adwaita SR, Subhash Mandal, Debmalya Roy i N. EswaraPrasad. "Fabrication of cellular structures in thermoplastic polyurethane matrix using carbonaceous nanofillers". IOP Conference Series: Materials Science and Engineering 1219, nr 1 (1.01.2022): 012004. http://dx.doi.org/10.1088/1757-899x/1219/1/012004.
Pełny tekst źródłaCui, Liting, Haining Wang, Sian Chen, Yiwen Zhang, Zhaoqian Lv, Jin Zhang, Yan Xiang i Shanfu Lu. "The Interaction Energy between Solvent Molecules and Graphene as an Effective Descriptor for Graphene Dispersion in Solvents". Journal of Physical Chemistry C 125, nr 9 (19.02.2021): 5167–71. http://dx.doi.org/10.1021/acs.jpcc.0c10132.
Pełny tekst źródłaRai, K. B., R. P. Yadav, P. M. Shrestha, S. P. Gupta, R. Neupane i R. R. Ghimire. "Fabrication of Gas Sensor Based on Graphene for the Adsorption of Gases Produced from Waste Material in Kitchen and its Surrounding". Journal of Nepal Physical Society 8, nr 3 (30.12.2022): 26–31. http://dx.doi.org/10.3126/jnphyssoc.v8i3.50719.
Pełny tekst źródłaShtepliuk, Ivan, Maria Santangelo, Mikhail Vagin, Ivan Ivanov, Volodymyr Khranovskyy, Tihomir Iakimov, Jens Eriksson i Rositsa Yakimova. "Understanding Graphene Response to Neutral and Charged Lead Species: Theory and Experiment". Materials 11, nr 10 (22.10.2018): 2059. http://dx.doi.org/10.3390/ma11102059.
Pełny tekst źródłaElazab, Hany A., i Tamer T. El-Idreesy. "Polyvinylpyrrolidone - Reduced Graphene Oxide - Pd Nanoparticles as an Efficient Nanocomposite for Catalysis Applications in Cross-Coupling Reactions". Bulletin of Chemical Reaction Engineering & Catalysis 14, nr 3 (1.12.2019): 490. http://dx.doi.org/10.9767/bcrec.14.3.3461.490-501.
Pełny tekst źródłaPurwandari, Vivi, Saharman Gea, Basuki Wirjosentono, Agus Haryono, I. Putu Mahendra i Yasir Arafat Hutapea. "Electrical and Thermal Conductivity of Cyclic Natural Rubber/Graphene Nanocomposite Prepared by Solution Mixing Technique". Indonesian Journal of Chemistry 20, nr 4 (10.06.2020): 801. http://dx.doi.org/10.22146/ijc.44791.
Pełny tekst źródłaWang, Jian, Ryuki Suzuki, Kentaro Ogata, Takuto Nakamura, Aixue Dong i Wei Weng. "Near-Linear Responsive and Wide-Range Pressure and Stretch Sensor Based on Hierarchical Graphene-Based Structures via Solvent-Free Preparation". Polymers 12, nr 8 (13.08.2020): 1814. http://dx.doi.org/10.3390/polym12081814.
Pełny tekst źródłaZhou, Wei, Qiao Liu, Nong Xu, Qing Wang, Long Fan i Qiang Dong. "In Situ Incorporation of TiO2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation". Membranes 13, nr 4 (26.03.2023): 377. http://dx.doi.org/10.3390/membranes13040377.
Pełny tekst źródłaHadano, Fabio Seiti, Anderson Emanuel Ximim Gavim, Josiani Cristina Stefanelo, Sara Luiza Gusso, Andreia Gerniski Macedo, Paula Cristina Rodrigues, Abd Rashid bin Mohd Yusoff, Fabio Kurt Schneider, Jeferson Ferreira de Deus i Wilson José da Silva. "NH3 Sensor Based on rGO-PANI Composite with Improved Sensitivity". Sensors 21, nr 15 (21.07.2021): 4947. http://dx.doi.org/10.3390/s21154947.
Pełny tekst źródłaColburn, Andrew, Ronald J. Vogler, Aum Patel, Mariah Bezold, John Craven, Chunqing Liu i Dibakar Bhattacharyya. "Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects". Nanomaterials 9, nr 6 (7.06.2019): 867. http://dx.doi.org/10.3390/nano9060867.
Pełny tekst źródłaMaya, M. G., Jiji Abraham, Soney C. George i Sabu Thomas. "Exploring the filler–polymer interaction and solvent transport behavior of nanocomposites derived from reduced graphene oxide and polychloroprene rubber". Journal of Applied Polymer Science 136, nr 44 (24.06.2019): 48168. http://dx.doi.org/10.1002/app.48168.
Pełny tekst źródłaRana, Malay Kumar, i Amalendu Chandra. "Solvation of narrow pores of graphene-like plates in simple dipolar liquids: Wetting and dewetting behavior and solvent dynamics for varying pore width and solute–solvent interaction". Chemical Physics 457 (sierpień 2015): 78–86. http://dx.doi.org/10.1016/j.chemphys.2015.05.009.
Pełny tekst źródłaZhou, Fengyi, Xuedan Song, Ce Hao i Jieshan Qiu. "Insight into the Inhibition of Shuttle by Metal-Modified Covalent Triazine Frameworks and Graphene Composites with the Solvent Interaction in Lithium Sulfur Batteries". ACS Applied Energy Materials 5, nr 1 (4.01.2022): 825–31. http://dx.doi.org/10.1021/acsaem.1c03272.
Pełny tekst źródłaFredi, Giulia, Mahdi Karimi Jafari, Andrea Dorigato, Dimitrios N. Bikiaris i Alessandro Pegoretti. "Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate)". Materials 15, nr 4 (10.02.2022): 1316. http://dx.doi.org/10.3390/ma15041316.
Pełny tekst źródłaGun’ko, V. M., Yu I. Sementsov, L. S. Andriyko, Yu M. Nychyporuk, O. I. Oranska, O. K. Matkovsky, Yu V. Grebel'na, B. Charmas, J. Skubiszewska–Zięba i M. T. Kartel. "2D–nanostructured carbons: effects of oxidation and packing disordering". Himia, Fizika ta Tehnologia Poverhni 14, nr 3 (30.09.2023): 275–99. http://dx.doi.org/10.15407/hftp14.03.275.
Pełny tekst źródłaChen, Zhongyan, Boqun Zhao, Yuhang Qin, Yi Zhou, Yinghua Lu i Wenyao Shao. "Thin-Film Nanocomposite Reverse Osmosis Membrane with High Flux and Antifouling Performance via Incorporating Maleic Anhydride-Grafted Graphene Oxide". Advances in Polymer Technology 2022 (22.08.2022): 1–8. http://dx.doi.org/10.1155/2022/4177619.
Pełny tekst źródłaMahani, Nosrat, Fatemeh Mostaghni i Homa Shafiekhani. "GRAPHEN-PHENYL-NH2 AS NANOCARRIER: A DENSITY FUNCTIONAL THEORY STUDY". Química Nova, 2022. http://dx.doi.org/10.21577/0100-4042.20170865.
Pełny tekst źródła