Artykuły w czasopismach na temat „Graphene silver nanocomposite films”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene silver nanocomposite films”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Balakrishnan, Dhivyabharathi, i Cheng-I. Lee. "Surface Functionalization of Bamboo with Silver-Reduced Graphene Oxide Nanosheets to Improve Hydrophobicity and Mold Resistance". Coatings 12, nr 7 (11.07.2022): 980. http://dx.doi.org/10.3390/coatings12070980.
Pełny tekst źródłaCobos, Mónica, Iker De-La-Pinta, Guillermo Quindós, María Jesús Fernández i María Dolores Fernández. "Synthesis, Physical, Mechanical and Antibacterial Properties of Nanocomposites Based on Poly(vinyl alcohol)/Graphene Oxide–Silver Nanoparticles". Polymers 12, nr 3 (24.03.2020): 723. http://dx.doi.org/10.3390/polym12030723.
Pełny tekst źródłaСеливерстова, Е. В., Н. Х. Ибраев i А. Ж. Жумабеков. "Влияние наночастиц серебра на фотодетектирующие свойства нанокомпозита TiO-=SUB=-2-=/SUB=-/оксид графена". Журнал технической физики 128, nr 9 (2020): 1337. http://dx.doi.org/10.21883/os.2020.09.49875.135-20.
Pełny tekst źródłaSerikov, T. M., P. A. Zhanbirbayeva, A. S. Baltabekov i A. B. Kuanyshbekova. "Photocatalytic activity of the TIO2/Ag/rGO nanocomposite". Bulletin of the Karaganda University. "Physics" Series 108, nr 4 (30.12.2022): 14–21. http://dx.doi.org/10.31489/2022ph4/14-21.
Pełny tekst źródłaJiang, Yu, Davide Carboni, Luca Malfatti i Plinio Innocenzi. "Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing". Materials 11, nr 9 (10.09.2018): 1674. http://dx.doi.org/10.3390/ma11091674.
Pełny tekst źródłaSahu, Ganeswar, Mamata Das, Mithilesh Yadav, Bibhu Prasad Sahoo i Jasaswini Tripathy. "Dielectric Relaxation Behavior of Silver Nanoparticles and Graphene Oxide Embedded Poly(vinyl alcohol) Nanocomposite Film: An Effect of Ionic Liquid and Temperature". Polymers 12, nr 2 (7.02.2020): 374. http://dx.doi.org/10.3390/polym12020374.
Pełny tekst źródłaLiu, Mingyang, Yanjun Chen, Chaoran Qin, Zheng Zhang, Shuai Ma, Xiuru Cai, Xueqian Li i Yifeng Wang. "Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method". Beilstein Journal of Nanotechnology 9 (17.04.2018): 1200–1210. http://dx.doi.org/10.3762/bjnano.9.111.
Pełny tekst źródłaSun, Haibin, Guixian Ge, Jiejun Zhu, Hailong Yan, Yang Lu, Yaozheng Wu, Jianguo Wan, Min Han i Yongsong Luo. "High electrical conductivity of graphene-based transparent conductive films with silver nanocomposites". RSC Advances 5, nr 130 (2015): 108044–49. http://dx.doi.org/10.1039/c5ra24650d.
Pełny tekst źródłaSharma, Neha, Sathish Panneer Selvam i Kyusik Yun. "Electrochemical detection of amikacin sulphate using reduced graphene oxide and silver nanoparticles nanocomposite". Applied Surface Science 512 (maj 2020): 145742. http://dx.doi.org/10.1016/j.apsusc.2020.145742.
Pełny tekst źródłaCarreño, N. L. V., A. M. Barbosa, V. C. Duarte, C. F. Correa, C. Ferrúa, F. Nedel, S. Peralta i in. "Metal-Carbon Interactions on Reduced Graphene Oxide under Facile Thermal Treatment: Microbiological and Cell Assay". Journal of Nanomaterials 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/6059540.
Pełny tekst źródłaPounraj, Saranya, Prathap Somu i Subhankar Paul. "Chitosan and graphene oxide hybrid nanocomposite film doped with silver nanoparticles efficiently prevents biofouling". Applied Surface Science 452 (wrzesień 2018): 487–97. http://dx.doi.org/10.1016/j.apsusc.2018.05.009.
Pełny tekst źródłaLi, Ziqing, Xixin Wang, Maodan Xu, Zekun Yin, Xu Tan i Jianling Zhao. "Facile Synthesis and Outstanding Supercapacitor Performance of Ternary Nanocomposite of Silver Particles Decorated N/S Dual-Doped Graphene and MoS2 Microspheres Stabilized by Graphene Quantum Dots". Journal of The Electrochemical Society 169, nr 2 (1.02.2022): 020525. http://dx.doi.org/10.1149/1945-7111/ac4f75.
Pełny tekst źródłaSiljanovska Petreska, Gordana, Jadranka Blazevska-Gilev, Radmila Tomovska i R. Fajgar. "Preparation of SERS Active Substrates Based on Ag/Graphene/Polymer Nanocomposites". Key Engineering Materials 605 (kwiecień 2014): 416–19. http://dx.doi.org/10.4028/www.scientific.net/kem.605.416.
Pełny tekst źródłaDat, Nguyen Minh, Tran Hoang Quan, Do Minh Nguyet, Trinh Ngoc Minh Anh, Doan Ba Thinh, Tran Chau Diep, Le Anh Huy i in. "Hybrid graphene oxide-immobilized silver nanocomposite with optimal fabrication route and multifunctional application". Applied Surface Science 551 (czerwiec 2021): 149434. http://dx.doi.org/10.1016/j.apsusc.2021.149434.
Pełny tekst źródłaKamil, A. F., H. I. Abdullah, A. M. Rheima i W. M. Khamis. "Modification of hummers presses for synthesis graphene oxide nano-sheets and graphene oxide /Ag nanocomposites". Journal of Ovonic Research 17, nr 3 (maj 2021): 253–59. http://dx.doi.org/10.15251/jor.2021.173.253.
Pełny tekst źródłaSun, Shibin, Sikai Tang, Xueting Chang, Nannan Wang, Dongsheng Wang, Tao Liu, Yanhua Lei i Yanqiu Zhu. "A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications". Applied Surface Science 473 (kwiecień 2019): 1049–61. http://dx.doi.org/10.1016/j.apsusc.2018.12.215.
Pełny tekst źródłaChatterjee, Aniruddha, i Dharmesh Hansora. "Graphene Based Functional Hybrid Nanostructures: Preparation, Properties and Applications". Materials Science Forum 842 (luty 2016): 53–75. http://dx.doi.org/10.4028/www.scientific.net/msf.842.53.
Pełny tekst źródłaKumar, S. Vijay, N. M. Huang, H. N. Lim, M. Zainy, I. Harrison i C. H. Chia. "Preparation of highly water dispersible functional graphene/silver nanocomposite for the detection of melamine". Sensors and Actuators B: Chemical 181 (maj 2013): 885–93. http://dx.doi.org/10.1016/j.snb.2013.02.045.
Pełny tekst źródłaNeella, Nagarjuna, Venkateswarlu Gaddam, Nayak M.M., Dinesh N.S. i Rajanna K. "Scalable fabrication of highly sensitive flexible temperature sensors based on silver nanoparticles coated reduced graphene oxide nanocomposite thin films". Sensors and Actuators A: Physical 268 (grudzień 2017): 173–82. http://dx.doi.org/10.1016/j.sna.2017.11.011.
Pełny tekst źródłaNowak, Nikola, Wiktoria Grzebieniarz, Gohar Khachatryan, Karen Khachatryan, Anna Konieczna-Molenda, Marcel Krzan i Jacek Grzyb. "Synthesis of Silver and Gold Nanoparticles in Sodium Alginate Matrix Enriched with Graphene Oxide and Investigation of Properties of the Obtained Thin Films". Applied Sciences 11, nr 9 (24.04.2021): 3857. http://dx.doi.org/10.3390/app11093857.
Pełny tekst źródłaQuach, Qui, i Tarek M. Abdel-Fattah. "Novel Inorganic-Organic Composites Based on Graphene Nanocomposite for Enhancing Antibacterial Properties". ECS Meeting Abstracts MA2022-02, nr 8 (9.10.2022): 669. http://dx.doi.org/10.1149/ma2022-028669mtgabs.
Pełny tekst źródłaDas, Suprem R., Sajia Sadeque, Changwook Jeong, Ruiyi Chen, Muhammad A. Alam i David B. Janes. "Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks". Nanophotonics 5, nr 1 (1.06.2016): 180–95. http://dx.doi.org/10.1515/nanoph-2016-0036.
Pełny tekst źródłaXu, Leihua, Yong Zhang, Dekun Zhang i Mei Leng. "Preparation and tribological properties of Ag nanoparticles/reduced graphene oxide nanocomposites". Industrial Lubrication and Tribology 70, nr 9 (19.11.2018): 1684–91. http://dx.doi.org/10.1108/ilt-03-2017-0054.
Pełny tekst źródłaLakshmi, N. V., i Pankaj Tambe. "EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites". Composite Interfaces 24, nr 9 (13.03.2017): 861–82. http://dx.doi.org/10.1080/09276440.2017.1302202.
Pełny tekst źródłaUsman, Adil, Zakir Hussain, Asim Riaz i Ahmad Nawaz Khan. "Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films". Carbohydrate Polymers 153 (listopad 2016): 592–99. http://dx.doi.org/10.1016/j.carbpol.2016.08.026.
Pełny tekst źródłaSundriyal, Poonam, i Shantanu Bhattacharya. "Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries". Materials Research Express 4, nr 3 (3.03.2017): 035501. http://dx.doi.org/10.1088/2053-1591/aa5ece.
Pełny tekst źródłaYu, Wen, Xiang Li, Jianxin He, Yuankun Chen, Linya Qi, Pingping Yuan, Kangkang Ou, Fan Liu, Yuman Zhou i Xiaohong Qin. "Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles". Journal of Colloid and Interface Science 584 (luty 2021): 164–73. http://dx.doi.org/10.1016/j.jcis.2020.09.092.
Pełny tekst źródłaNagarajan, Ramila Devi, i Ashok K. Sundramoorthy. "One-pot electrosynthesis of silver nanorods/graphene nanocomposite using 4-sulphocalix[4]arene for selective detection of oxalic acid". Sensors and Actuators B: Chemical 301 (grudzień 2019): 127132. http://dx.doi.org/10.1016/j.snb.2019.127132.
Pełny tekst źródłaKamil, A. F., H. I. Abdullah, A. M. Rheima i S. H. Mohammed. "Photochemical synthesized NiO nanoparticles based dye-sensitized solar cells: a comparative study on the counter lectrodes and dye-sensitized concentrations". Journal of Ovonic Research 17, nr 3 (maj 2021): 299–305. http://dx.doi.org/10.15251/jor.2021.173.299.
Pełny tekst źródłaDat, Nguyen Minh, Tran Hoang Quan, Do Minh Nguyet, Trinh Ngoc Minh Anh, Doan Ba Thinh, Tran Chau Diep, Le Anh Huy i in. "Corrigendum to “Hybrid graphene oxide-immobilized silver nanocomposite with optimal fabrication route and multifunctional application” [Appl. Surf. Sci. 551 (2021) 149434]". Applied Surface Science 555 (lipiec 2021): 149681. http://dx.doi.org/10.1016/j.apsusc.2021.149681.
Pełny tekst źródłaChoi, Yejung, Si Won Song, Wytse Hooch Antink, Hyung Min Kim i Yuanzhe Piao. "A silver/graphene oxide nanocomposite film as a flexible SERS substrate for reliable quantitative analysis using high-speed spiral scanning spectrometry". Chemical Communications 53, nr 73 (2017): 10108–11. http://dx.doi.org/10.1039/c7cc04161f.
Pełny tekst źródłaKisielewska, Aneta, Kaja Spilarewicz-Stanek, Michał Cichomski, Witold Kozłowski i Ireneusz Piwoński. "The role of graphene oxide and its reduced form in the in situ photocatalytic growth of silver nanoparticles on graphene-TiO2 nanocomposites". Applied Surface Science 576 (luty 2022): 151759. http://dx.doi.org/10.1016/j.apsusc.2021.151759.
Pełny tekst źródłaKaladevi, G., S. Meenakshi, K. Pandian i P. Wilson. "Synthesis of Well-Dispersed Silver Nanoparticles on Polypyrrole/Reduced Graphene Oxide Nanocomposite for Simultaneous Detection of Toxic Hydrazine and Nitrite in Water Sources". Journal of The Electrochemical Society 164, nr 13 (2017): B620—B631. http://dx.doi.org/10.1149/2.0611713jes.
Pełny tekst źródłaLiao, Chengzhu, Yuchao Li i Sie Chin Tjong. "Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties". Nanomaterials 10, nr 1 (9.01.2020): 124. http://dx.doi.org/10.3390/nano10010124.
Pełny tekst źródłaRaj, Mamta, i Rajendra N. Goyal. "Silver nanoparticles and electrochemically reduced graphene oxide nanocomposite based biosensor for determining the effect of caffeine on Estradiol release in women of child-bearing age". Sensors and Actuators B: Chemical 284 (kwiecień 2019): 759–67. http://dx.doi.org/10.1016/j.snb.2019.01.018.
Pełny tekst źródłaBabaahmadi, Vahid, Ramazan Ali Abuzade i Majid Montazer. "Enhanced ultraviolet ‐protective textiles based on reduced graphene oxide‐silver nanocomposites on polyethylene terephthalate using ultrasonic‐assisted in‐situ thermal synthesis". Journal of Applied Polymer Science 139, nr 21 (5.02.2022): 52196. http://dx.doi.org/10.1002/app.52196.
Pełny tekst źródłaAlharthi, Amjad F., Mohamed Gouda, Mai M. Khalaf, Abraham Elmushyakhi, Manal F. Abou Taleb i Hany M. Abd El-Lateef. "Cellulose-Acetate-Based Films Modified with Ag2O and ZnS as Nanocomposites for Highly Controlling Biological Behavior for Wound Healing Applications". Materials 16, nr 2 (12.01.2023): 777. http://dx.doi.org/10.3390/ma16020777.
Pełny tekst źródłaYaremchuk, I., T. Bulavinets, P. Stakhira i V. Fitio. "NANOCOMPOSITE MATERIALS BASED ON GRAPHENE, GRAPHENE OXIDE, AND SILVER NANOPARTICLES". Information and communication technologies, electronic engineering 3, nr 1 (czerwiec 2023): 163–69. http://dx.doi.org/10.23939/ictee2023.01.163.
Pełny tekst źródłaWang, Junyang, Caiyi Du, Peitong Yu, Qian Zhang, Hongxia Li i Chunyan Sun. "A label-free and enzyme-free fluorescent assay for mercury ions based on T-Hg(II)-T nanoladders and DNA-templated silver nanoclusters/graphene oxide nanocomposites". Sensors and Actuators B: Chemical 348 (grudzień 2021): 130707. http://dx.doi.org/10.1016/j.snb.2021.130707.
Pełny tekst źródłaChook, Soon Wei, Chin Hua Chia, Zakaria Sarani, Mohd Khan Ayob, Kah Leong Chee, Hui Min Neoh i Nay Ming Huang. "Silver Nanoparticles - Graphene Oxide Nanocomposite for Antibacterial Purpose". Advanced Materials Research 364 (październik 2011): 439–43. http://dx.doi.org/10.4028/www.scientific.net/amr.364.439.
Pełny tekst źródłaMohd Zin, Farah Amanina, An'amt Mohamed Noor, Seong Wei Lee, Mohd Shaiful Sajab, Mohammad Khairul Azhar Abdul Razab, Nor Hakimin Abdullah, Wan Mohd Faizal Wan Ishak, Khairul Nizar Syazwan Salihin Wong i Nurul Akmar Che Zaudin. "Graphene Oxide Silver Cellulose Alginate for Antibacterial". Materials Science Forum 1010 (wrzesień 2020): 590–95. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.590.
Pełny tekst źródłaBeegum. S, Asmitha, i S. Begila David. "Synthesis and Antibacterial Study of Silver NanoparticlesNitrogen Doped Graphene Oxide-Chitosan Nanocomposite". Oriental Journal Of Chemistry 39, nr 1 (28.02.2023): 154–60. http://dx.doi.org/10.13005/ojc/390118.
Pełny tekst źródłaCheng, Deshan, Anwar Jahid, Guangming Cai, Jihong Wu i Xin Wang. "Surface Characterisation of Polyelectrolyte/Silver Nanocomposite Films". Polymers and Polymer Composites 25, nr 8 (październik 2017): 635–42. http://dx.doi.org/10.1177/096739111702500809.
Pełny tekst źródłaDubas, Stephan T., i Vimolvan Pimpan. "Optical switch from silver nanocomposite thin films". Materials Letters 62, nr 19 (lipiec 2008): 3361–63. http://dx.doi.org/10.1016/j.matlet.2008.03.036.
Pełny tekst źródłaRaghavendra, Gownolla Malegowd, Jeyoung Jung, Dowan kim i Jongchul Seo. "Microwave assisted antibacterial chitosan–silver nanocomposite films". International Journal of Biological Macromolecules 84 (marzec 2016): 281–88. http://dx.doi.org/10.1016/j.ijbiomac.2015.12.026.
Pełny tekst źródłaSinghal, Anuj, Vijay Kumar Anand i G. S. Virdi. "Graphene Oxide/Silver Nanocomposite Based Non-Enzymatic Glucose Sensor". Journal of Bionanoscience 12, nr 3 (1.06.2018): 397–400. http://dx.doi.org/10.1166/jbns.2018.1527.
Pełny tekst źródłaYÜREKLİ BAYAR, Elif, Bengü GETİREN, Furkan SOYSAL, Zafer ÇIPLAK, Nuray YILDIZ i Emine BAYRAKTAR. "Graphene oxide/polyaniline/silver nanocomposite synthesis and photothermal performance". Materials Research Bulletin 166 (październik 2023): 112352. http://dx.doi.org/10.1016/j.materresbull.2023.112352.
Pełny tekst źródłaKhan, Hizb Ullah, Muhammad Tariq Jan, Mahmood Iqbal, Mutabar Shah, Inam Ullah, Jehangeer Khan, Kalsoom Mahmood, Abdul Niaz i Muhammad Tariq. "Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor". Zeitschrift für Physikalische Chemie 234, nr 1 (28.01.2020): 27–43. http://dx.doi.org/10.1515/zpch-2018-1302.
Pełny tekst źródłaLi, Lei, i Qunfeng Cheng. "Bioinspired nanocomposite films with graphene and MXene". Giant 12 (grudzień 2022): 100117. http://dx.doi.org/10.1016/j.giant.2022.100117.
Pełny tekst źródłaSantos, Catherine M., Maria Celeste R. Tria, Regina Aileen May V. Vergara, Farid Ahmed, Rigoberto C. Advincula i Debora F. Rodrigues. "Antimicrobial graphene polymer (PVK-GO) nanocomposite films". Chemical Communications 47, nr 31 (2011): 8892. http://dx.doi.org/10.1039/c1cc11877c.
Pełny tekst źródła