Artykuły w czasopismach na temat „Graphene Quantum Sheets”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene Quantum Sheets”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Flouris, Kyriakos, Miller Mendoza Jimenez i Hans J. Herrmann. "Landau levels in wrinkled and rippled graphene sheets". International Journal of Modern Physics C 30, nr 10 (październik 2019): 1941006. http://dx.doi.org/10.1142/s0129183119410067.
Pełny tekst źródłaKlimchitskaya, Galina L., i Vladimir M. Mostepanenko. "Casimir and Casimir-Polder Forces in Graphene Systems: Quantum Field Theoretical Description and Thermodynamics". Universe 6, nr 9 (9.09.2020): 150. http://dx.doi.org/10.3390/universe6090150.
Pełny tekst źródłaWang, Jigang, Ji Zhou, Wenhua Zhou, Jilong Shi, Lun Ma, Wei Chen, Yongsheng Wang, Dawei He, Ming Fu i Yongna Zhang. "Synthesis, Photoluminescence and Bio-Targeting Applications of Blue Graphene Quantum Dots". Journal of Nanoscience and Nanotechnology 16, nr 4 (1.04.2016): 3457–67. http://dx.doi.org/10.1166/jnn.2016.11817.
Pełny tekst źródłaHassanien, Ahmed S., Radwa A. Shedeed i Nageh K. Allam. "Graphene Quantum Sheets with Multiband Emission: Unravelling the Molecular Origin of Graphene Quantum Dots". Journal of Physical Chemistry C 120, nr 38 (13.09.2016): 21678–84. http://dx.doi.org/10.1021/acs.jpcc.6b07593.
Pełny tekst źródłaKanodarwala, Fehmida K., Fan Wang, Peter J. Reece i John A. Stride. "Deposition of CdSe quantum dots on graphene sheets". Journal of Luminescence 146 (luty 2014): 46–52. http://dx.doi.org/10.1016/j.jlumin.2013.08.072.
Pełny tekst źródłaFlouris, Kyriakos, Sauro Succi i Hans J. Herrmann. "Quantized Alternate Current on Curved Graphene". Condensed Matter 4, nr 2 (9.04.2019): 39. http://dx.doi.org/10.3390/condmat4020039.
Pełny tekst źródłaSim, Uk, Joonhee Moon, Junghyun An, Jin Hyoun Kang, Sung Eun Jerng, Junsang Moon, Sung-Pyo Cho, Byung Hee Hong i Ki Tae Nam. "N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production". Energy & Environmental Science 8, nr 4 (2015): 1329–38. http://dx.doi.org/10.1039/c4ee03607g.
Pełny tekst źródłaZeng, Minxiang, Xuezhen Wang, Yi-Hsien Yu, Lecheng Zhang, Wakaas Shafi, Xiayun Huang i Zhengdong Cheng. "The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Miniemulsion Polymerization". Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/6490383.
Pełny tekst źródłaDehestani, Maryam, Leila Zeidabadinejad i Sedigheh Pourestarabadi. "QTAIM investigations of decorated graphyne and boron nitride for Li detection". Journal of the Serbian Chemical Society 82, nr 3 (2017): 289–301. http://dx.doi.org/10.2298/jsc160725012d.
Pełny tekst źródłaGovindhan, Maduraiveeran, Brennan Mao i Aicheng Chen. "Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting". Nanoscale 8, nr 3 (2016): 1485–92. http://dx.doi.org/10.1039/c5nr06726j.
Pełny tekst źródłaMin, Misook, Gustavo A. Saenz i Anupama B. Kaul. "Optoelectronic properties of graphene quantum dots with molybdenum disulfide". MRS Advances 4, nr 10 (2019): 615–20. http://dx.doi.org/10.1557/adv.2019.50.
Pełny tekst źródłaRyu, Jaehoon, Eunwoo Lee, Seungae Lee i Jyongsik Jang. "Fabrication of graphene quantum dot-decorated graphene sheets via chemical surface modification". Chem. Commun. 50, nr 98 (31.10.2014): 15616–18. http://dx.doi.org/10.1039/c4cc06567k.
Pełny tekst źródłaPan, Dengyu, Jingchun Zhang, Zhen Li i Minghong Wu. "Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots". Advanced Materials 22, nr 6 (9.02.2010): 734–38. http://dx.doi.org/10.1002/adma.200902825.
Pełny tekst źródłaHoang, Thi Thu, Hoai Phuong Pham i Quang Trung Tran. "A Facile Microwave-Assisted Hydrothermal Synthesis of Graphene Quantum Dots for Organic Solar Cell Efficiency Improvement". Journal of Nanomaterials 2020 (11.02.2020): 1–8. http://dx.doi.org/10.1155/2020/3207909.
Pełny tekst źródłaGupta, Sanju, Jared Walden, Alexander Banaszak i Sara B. Carrizosa. "Facile Synthesis of Water-Soluble Graphene Quantum Dots/Graphene for Efficient Photodetector". MRS Advances 3, nr 15-16 (2018): 817–24. http://dx.doi.org/10.1557/adv.2018.14.
Pełny tekst źródłaSim, Uk, Joonhee Moon, Junghyun An, Jin Hyoun Kang, Sung Eun Jerng, Junsang Moon, Sung-Pyo Cho, Byung Hee Hong i Ki Tae Nam. "Correction: N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production". Energy & Environmental Science 8, nr 5 (2015): 1626. http://dx.doi.org/10.1039/c5ee90012c.
Pełny tekst źródłaLi, Junwen, i Vivek B. Shenoy. "Graphene quantum dots embedded in hexagonal boron nitride sheets". Applied Physics Letters 98, nr 1 (3.01.2011): 013105. http://dx.doi.org/10.1063/1.3533804.
Pełny tekst źródłaXu, Yuanqing, Jinquan Chang, Cheng Liang, Xinyu Sui, Yanhong Ma, Luting Song, Wenyu Jiang i in. "Tailoring Multi-Walled Carbon Nanotubes into Graphene Quantum Sheets". ACS Applied Materials & Interfaces 12, nr 42 (28.09.2020): 47784–91. http://dx.doi.org/10.1021/acsami.0c11702.
Pełny tekst źródłaSaha, Shyamal K., Moni Baskey i Dipanwita Majumdar. "Graphene Quantum Sheets: A New Material for Spintronic Applications". Advanced Materials 22, nr 48 (21.10.2010): 5531–36. http://dx.doi.org/10.1002/adma.201003300.
Pełny tekst źródłade Oliveira, César R., i Vinícius L. Rocha. "Dirac cones for graph models of multilayer AA-stacked graphene sheets". Zeitschrift für Naturforschung A 76, nr 4 (15.02.2021): 371–84. http://dx.doi.org/10.1515/zna-2020-0330.
Pełny tekst źródłaPoklonski, N. A., S. V. Ratkevich, S. A. Vyrko, A. T. Vlassov i Nguyen Ngoc Hieu. "Quantum Chemical Calculation of Reactions Involving C20, C60, Graphene and H2O". International Journal of Nanoscience 18, nr 03n04 (26.03.2019): 1940008. http://dx.doi.org/10.1142/s0219581x19400088.
Pełny tekst źródłaTan, Qingke, Xiangli Kong, Xianggang Guan, Chao Wang i Binghui Xu. "Crystallization of zinc oxide quantum dots on graphene sheets as an anode material for lithium ion batteries". CrystEngComm 22, nr 2 (2020): 320–29. http://dx.doi.org/10.1039/c9ce01285k.
Pełny tekst źródłaArmaghani, Sahar, Ali Rostami i Peyman Mirtaheri. "Graphene Nanoribbon Bending (Nanotubes): Interaction Force between QDs and Graphene". Coatings 12, nr 9 (15.09.2022): 1341. http://dx.doi.org/10.3390/coatings12091341.
Pełny tekst źródłaLiu, Jia Hui, Rong Sheng Li, Binfang Yuan, Jian Wang, Yuan Fang Li i Cheng Zhi Huang. "Mitochondria-targeting single-layered graphene quantum dots with dual recognition sites for ATP imaging in living cells". Nanoscale 10, nr 36 (2018): 17402–8. http://dx.doi.org/10.1039/c8nr06061d.
Pełny tekst źródłaFang, Tian, Aniruddha Konar, Huili Xing i Debdeep Jena. "Carrier statistics and quantum capacitance of graphene sheets and ribbons". Applied Physics Letters 91, nr 9 (27.08.2007): 092109. http://dx.doi.org/10.1063/1.2776887.
Pełny tekst źródłaJin, Yinhua, Hongyi Qin, Jang Ah Kim, Sun-Young Kim, Hyeong-U. Kim, Yong Taik Lim, Taesung Kim, Atul Kulkarni i Dongbin Kim. "High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel". Nano 11, nr 12 (grudzień 2016): 1650138. http://dx.doi.org/10.1142/s1793292016501381.
Pełny tekst źródłaKlimchitskaya, Galina L., Constantine C. Korikov, Vladimir M. Mostepanenko i Oleg Yu Tsybin. "Impact of Mass-Gap on the Dispersion Interaction of Nanoparticles with Graphene out of Thermal Equilibrium". Applied Sciences 13, nr 13 (25.06.2023): 7511. http://dx.doi.org/10.3390/app13137511.
Pełny tekst źródłaYang, S. Y., A. Díez-Carlón, J. Díez-Mérida, A. Jaoui, I. Das, G. Di Battista, R. Luque-Merino, R. Mech i Dmitri K. Efetov. "Plethora of many body ground states in magic angle twisted bilayer graphene". Low Temperature Physics 49, nr 6 (1.06.2023): 631–39. http://dx.doi.org/10.1063/10.0019420.
Pełny tekst źródłaBanerjee, Sangam, i Dhananjay Bhattacharyya. "Electronic properties of nano-graphene sheets calculated using quantum chemical DFT". Computational Materials Science 44, nr 1 (listopad 2008): 41–45. http://dx.doi.org/10.1016/j.commatsci.2008.01.044.
Pełny tekst źródłaHuang, J., L.-W. Guo, Z.-L. Li, L.-L. Chen, J.-J. Lin, Y.-P. Jia, W. Lu, Y. Guo i X.-L. Chen. "Anisotropic quantum transport in a network of vertically aligned graphene sheets". Journal of Physics: Condensed Matter 26, nr 34 (4.08.2014): 345301. http://dx.doi.org/10.1088/0953-8984/26/34/345301.
Pełny tekst źródłaTulegenova, Malika, Arkady Ilyin, Nazim Guseinov, Gary Beall i Tilek Kuanyshbekov. "Computer Simulation of the Effect of Structural Defects on the Effectiveness of the Graphene's Protective Properties". Journal of Computational and Theoretical Nanoscience 16, nr 2 (1.02.2019): 351–54. http://dx.doi.org/10.1166/jctn.2019.8020.
Pełny tekst źródłaPan, Dengyu, Lei Guo, Jingchun Zhang, Chen Xi, Qi Xue, He Huang, Jinghui Li i in. "Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence". Journal of Materials Chemistry 22, nr 8 (2012): 3314. http://dx.doi.org/10.1039/c2jm16005f.
Pełny tekst źródłaSon, Dong Ick, Byoung Wook Kwon, Hong-Hee Kim, Dong Hee Park, Basavaraj Angadi i Won Kook Choi. "Chemical exfoliation of pure graphene sheets from synthesized ZnO–graphene quasi core–shell quantum dots". Carbon 59 (sierpień 2013): 289–95. http://dx.doi.org/10.1016/j.carbon.2013.03.021.
Pełny tekst źródłaMoon, Joonhee, Junghyun An, Uk Sim, Sung-Pyo Cho, Jin Hyoun Kang, Chul Chung, Jung-Hye Seo, Jouhahn Lee, Ki Tae Nam i Byung Hee Hong. "One-Step Synthesis of N-doped Graphene Quantum Sheets from Monolayer Graphene by Nitrogen Plasma". Advanced Materials 26, nr 21 (24.03.2014): 3501–5. http://dx.doi.org/10.1002/adma.201306287.
Pełny tekst źródłaHameed, Riad M., Ahmad Al-Haddad i Abbas K. H. Albarazanchi. "Influence of Graphene Sheets Accumulation on Optical Band Gap Enhanced Graphite Exfoliation". Al-Mustansiriyah Journal of Science 33, nr 4 (30.12.2022): 168–74. http://dx.doi.org/10.23851/mjs.v33i4.1216.
Pełny tekst źródłaYang, Yang, Fangcai Zheng, Guoliang Xia, Zhengyan Lun i Qianwang Chen. "Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode". Journal of Materials Chemistry A 3, nr 36 (2015): 18657–66. http://dx.doi.org/10.1039/c5ta05676d.
Pełny tekst źródłaKoutsioukis, Apostolos, Konstantinos Spyrou, Nikolaos Chalmpes, Dimitrios Gournis i Vasilios Georgakilas. "Hydrothermal Unzipping of Multiwalled Carbon Nanotubes and Cutting of Graphene by Potassium Superoxide". Nanomaterials 12, nr 3 (28.01.2022): 447. http://dx.doi.org/10.3390/nano12030447.
Pełny tekst źródłaGhaeidamini, Marziyeh, David Bernson, Nima Sasanian, Ranjeet Kumar i Elin K. Esbjörner. "Graphene oxide sheets and quantum dots inhibit α-synuclein amyloid formation by different mechanisms". Nanoscale 12, nr 37 (2020): 19450–60. http://dx.doi.org/10.1039/d0nr05003b.
Pełny tekst źródłaPourhashem, Sepideh, Alimorad Rashidi i Mohammad Reza Vaezi. "Comparing the corrosion protection performance of graphene nanosheets and graphene quantum dots as nanofiller in epoxy coatings". Industrial Lubrication and Tribology 71, nr 5 (8.07.2019): 653–56. http://dx.doi.org/10.1108/ilt-05-2018-0186.
Pełny tekst źródłaWu, Zhong-Shuai, Xinliang Feng i Hui-Ming Cheng. "Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage". National Science Review 1, nr 2 (6.12.2013): 277–92. http://dx.doi.org/10.1093/nsr/nwt003.
Pełny tekst źródłaLi, Shixiong, Qiaoling Mo, Xiaoxia Lai, Yufeng Chen, Chuansong Lin, Yan Lu i Beiling Liao. "Inorganic coordination polymer quantum sheets@graphene oxide composite photocatalysts: Performance and mechanism". Journal of Materials Research 34, nr 18 (15.07.2019): 3220–30. http://dx.doi.org/10.1557/jmr.2019.207.
Pełny tekst źródłaCarissan, Yannick, i Wim Klopper. "Growing Graphene Sheets from Reactions with Methyl Radicals: A Quantum Chemical Study". ChemPhysChem 7, nr 8 (11.08.2006): 1770–78. http://dx.doi.org/10.1002/cphc.200600171.
Pełny tekst źródłaGlukhova O. E., Slepchenkov M. M. i Kolesnichenko P. A. "Tunneling current between structural elements of thin graphene/nanotube films". Physics of the Solid State 64, nr 14 (2022): 2450. http://dx.doi.org/10.21883/pss.2022.14.54349.180.
Pełny tekst źródłaManoj, B., Ashlin M. Raj i George Thomas Chirayil. "Facile synthesis of preformed mixed nano-carbon structure from low rank coal". Materials Science-Poland 36, nr 1 (18.05.2018): 14–20. http://dx.doi.org/10.1515/msp-2018-0026.
Pełny tekst źródłaSinner, Andreas, i Gregor Tkachov. "Quantum Diffusion in the Lowest Landau Level of Disordered Graphene". Nanomaterials 12, nr 10 (14.05.2022): 1675. http://dx.doi.org/10.3390/nano12101675.
Pełny tekst źródłaYing, Yulong, Peng He, Guqiao Ding i Xinsheng Peng. "Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots". Nanotechnology 27, nr 24 (9.05.2016): 245703. http://dx.doi.org/10.1088/0957-4484/27/24/245703.
Pełny tekst źródłaRiaz, Rabia, Mumtaz Ali, Iftikhar Ali Sahito, Alvira Ayoub Arbab, T. Maiyalagan, Aima Sameen Anjum, Min Jae Ko i Sung Hoon Jeong. "Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity". Applied Surface Science 480 (czerwiec 2019): 1035–46. http://dx.doi.org/10.1016/j.apsusc.2019.02.228.
Pełny tekst źródłaГлухова, О. Е., М. М. Слепченков i П. А. Колесниченко. "Туннельный ток между структурными элементами тонких графен/нанотрубных пленок". Физика твердого тела 63, nr 12 (2021): 2198. http://dx.doi.org/10.21883/ftt.2021.12.51684.180.
Pełny tekst źródłaDas, Ruchira, Priyanka Sow, Sudatta Dey i Asmita Samadder. "A brief overview on role of graphene based material in therapeutic management of inflammatory response signalling cascades". INTERNATIONAL JOURNAL OF EXPERIMENTAL RESEARCH AND REVIEW 21 (30.04.2020): 25–36. http://dx.doi.org/10.52756/ijerr.2020.v21.004.
Pełny tekst źródłaRiaz, Rabia, Mumtaz Ali, Hassan Anwer, Min Jae Ko i Sung Hoon Jeong. "Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode". Journal of Colloid and Interface Science 557 (grudzień 2019): 174–84. http://dx.doi.org/10.1016/j.jcis.2019.09.028.
Pełny tekst źródła