Gotowa bibliografia na temat „Graphène – Propriétés optiques”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphène – Propriétés optiques”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Rozprawy doktorskie na temat "Graphène – Propriétés optiques"

1

Zhao, Shen. "Propriétés optiques de nanorubans et boites quantiques de graphène". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN032/document.

Pełny tekst źródła
Streszczenie:
Ce manuscrit présente une étude expérimentale sur les propriétés optiques des nanorubans de graphène (acronyme anglais : GNRs) et des boites quantiques de graphène (acronyme anglais : GQDs) synthétisés par la chimie ascendante.Pour la partie sur les GNRs, les spectres d'absorption et de photoluminescence ainsi que les mesures de la durée de vie sur la dispersion impliquent la formation d'états excimères résultant de l'agrégation des GNRs. Au moyen de la microscopie confocale et de la microscopie à force atomique, nous observons l'émission de petits agrégats de GNRs confirmant leur capacité à émettre de la lumière à l'état solide. D'autre part, les caractérisations optiques des GNRs synthétisés sur une surface d’or présentent des caractéristiques de Raman remarquables, impliquant les propriétés vibrationnelles spécifiques des GNRs par rapport au graphène et aux nanotubes de carbone. La PL observée est spectralement large avec une énergie plus élevée que celle de la bande interdite des GNRs. Cela pourrait être lié aux défauts créés lors de la préparation de l'échantillon.Pour la partie sur les GQDs, les résultats de spectroscopie optique indiquent que les GQDs sont individualisées en dispersion plutôt que sous la forme d’agrégats. Ensuite, grâce à la microphotoluminescence, nous abordons directement les propriétés intrinsèques des GQDs uniques. Des mesures de corrélation de photons de second ordre révèlent que les GQDs présentent une émission de photons uniques avec une grande pureté. De plus, l'émission de GQD présente une bonne photo-stabilité avec une brillance élevée. Comme premier exemple de l'accordabilité optique des GQDs via le contrôle de la structure, nous observons que l'émission de GQDs fonctionalisés avec des atomes de chlore est décalée de près de 100 nm tout en maintenant une émission de photons uniques
This manuscript presents an experimental study on the optical properties of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs) synthesized by bottom-up chemistry.For the part on GNRs, the optical absorption and photoluminescence spectra as well as the life-time measurements on the dispersion of solution-mediated synthesized GNRs implies the formation of excimer states as a result of aggregation of GNRs. By means of confocal fluorescence microscopy and atomic force microscopy, we observe the emission of small GNR aggregates confirming the ability of GNRs to emit light in the solid state. On the other hand, the optical characterizations of on-surface synthesized GNRs shows remarkable Raman features, implying the distinct vibrational properties of GNRs compared to graphene and carbon nanotubes. The observed PL is spectrally broad with higher energy instead of a bright bandgap emission, which might be related to the defects created during the sample preparation.For the part on GQDs, the optical spectroscopy results indicate that GQDs are individualized in dispersions rather than in the form of aggregates. Then by means of microphotoluminescence, we directly address the intrinsic properties of single GQDs. Second-order photon correlation measurements reveal that GQDs exhibit single-photon emission with a high purity. Notably, the emission of GQDs has good photo-stability with high brightness. As a first example of the optical tunability of GQDs through the control of their structure, we observe that the emission of single edge-chlorinated GQDs is redshifted by almost 100 nm while maintaining the single-photon emission
Style APA, Harvard, Vancouver, ISO itp.
2

Leszczynski, Przemyslaw. "Propriétés optiques et magnéto-optiques de systèmes électroniques purement bidimensionnels graphène". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY002/document.

Pełny tekst źródła
Streszczenie:
Malgré l'attention massive que le graphène a attiré ces dernières années, beaucoup de questions concernant ses propriétés fondamentales restent sans réponse. Dans ce travail, nous présentons les résultats d'une série d'expériences de magnéto-optique effectuées sur des systèmes de type graphène différents. La spectroscopie de diffusion micro-Raman a été utilisée comme une méthode de choix, en raison de son caractère non invasif, des puissantes possibilités de caractérisation qu’elle offre, et de la haute résolution spatiale. Les champs magnétiques élevés ont aussi été utilisés pour permettre d’ajuster de manière continue l'énergie des excitations électroniques inter-niveau de Landau et de les amener en résonance avec d'autres excitations existant dans le système. L’étude de l'évolution des excitations inter-niveau de Landau sous champs magnétique et les détails de la résonance magnéto-phonon, nous ont fourni des informations importantes sur les détails de l'interaction électron-phonon dans le graphène. Trois types de graphène différents sont étudiés dans ce manuscrit. Le premier se compose de flocons de graphène qui peuvent être trouvés sur la surface de graphite. Il est peut-être le système de graphène le moins étudié, mais est celui qui présente la qualité électronique la plus élevé. Dans le chapitre 7, nous présentons les résultats de nos expériences de diffusion magnéto-Raman sur ce système. Notre méthode de localisation de ces flocons à l'aide ou non d'un champ magnétique est présenté. L'évolution des excitations électroniques dans des champs magnétiques est discutée. Les effets de la température, la longueur d'onde d'excitation et de couplage différent sur le substrat sont présentés. Nous démontrons que, pour des champs magnétiques élevés une structure fine des principales excitations électroniques inter-bande se développe, et est discutée en termes de dopage et d’asymétrie électron-trou. Un nouveau type de résonance électron-phonon est observée, qui implique une diffusion inter-vallée des porteurs et l’émission d'un phonon au point K. Un procédé analogue pour les phonons du voisinage du point Γ est observé. Le deuxième système étudié est constitué d'un flocon de graphène encapsulé entre deux couches de nitrure de bore hexagonal (hBN) plat à l’échelle atomique. Il est le représentant d'une nouvelle classe de matériaux, où les différents cristaux 2D, sont empilés les uns sur les autres dans un ordre prédéfini, pour modifier certaines propriétés de ses constituants. Déposer le graphène sur une mince couche de hBN améliore largement ses propriétés électroniques, en comparaison à du graphène déposée sur Si/SiO2. Dans le chapitre 8, nous présentons des résultats obtenus sur ce système. Nous montrons comment la cartographie spatiale associée à la technique de spectroscopie Raman peut être utilisé pour la caractérisation et la visualisation sélective des composants individuels et des structures complexes empilés. La première observation non ambiguë de la résonance magnéto-phonon et d’une excitation électronique (L -1,1) dans du graphene exfolié neutre est présentée. Une dépendance de la vitesse de Fermi par rapport au champ magnétique est démontrée. En outre, la dépendance de la vitesse de Fermi et d’énergie de bande 2D sur le substrat est observée et discutée en termes de d’écrantage diélectrique de l'interaction électron-électron.Le dernier système étudié sont des flocons de graphène produit par croissance CVD, avec des contacts électriques. Dans le chapitre 9, nous détaillons les résultats d'une expérience, où la force de l'interaction électron-phonon dans un échantillon de graphène avec une grille électrostatique, peut être ajustée, avec succès, par la tension de grille appliquée. Nous comparons ces résultats avec les calculs théoriques et nous montrons que les excitations électroniques intra-bande jouent un rôle important dans la renormalisation de l'énergie des phonons
Despite the massive attention that graphene has attracted in recent years, there are still many unanswered questions about its fundamental properties. In this work we present the results of a series of magneto-optical experiments performed on different graphene systems. The micro-Raman scattering spectroscopy was used as our method of choice, due to its non-invasive character, powerful characterization possibilities and high spatial resolution. The high magnetic fields were used to continuously tune the energy of inter-Landau level electronic excitations into a resonance with other excitations existing in the system. The magnetic field evolution of Raman active inter-Landau level excitations, and the details of the magneto-phonon resonance, gave us important information about the details of the electron-phonon interaction in graphene. Three different types of graphene are studied in this work. The first one consists of graphene flakes that can be found on the surface of graphite. It is possibly the least investigated graphene system, yet the one that shows the highest electronic quality. In Chapter 7 we present results of our magneto-Raman scattering experiments on this system. Our method for locating these flakes with the use of the magnetic field and without it is presented. The evolution of electronic excitations in magnetic fields is discussed. The effects of temperature, excitation wavelength and different coupling to the substrate are shown. We demonstrate that at high magnetic fields a fine-structure of the principal interband electronic excitation develops and discuss it in terms of doping and electron-hole asymmetry. A new type of a resonant electron-phonon interaction is observed, which involve an inter-valley carrier scattering and an emission of a K-point phonon. An analogous process for the phonons from the vicinity of the Γ point is observed.The second studied system consists of a graphene flake encapsulated between two layers of atomically flat hexagonal boron nitride (hBN). It is a representative of a novel class of materials, where different 2D crystals, are stacked on top of each other in a predefined order, to modify some properties of its constituents. Depositing graphene on a thin layer of hBN is expected to largely improve its electronic properties, as compared to graphene deposited on Si/SiO2. In Chapter 8 we present results obtained on such system. We show how spatial mapping with Raman scattering technique can be used for characterization and selective visualization of each constituent of the complex, stacked structures. A first, clear observation of a magneto-phonon resonance and L(-1,1) electronic excitation in an intrinsic, exfoliated graphene is shown. The Fermi velocity dependence on the magnetic field is demonstrated. Also, the Fermi velocity and 2D band energy dependence on the substrate is observed and discussed in terms of dielectric screening of the electron-electron interaction.The last studied system is the CVD grown graphene flake with electrical contacts. In Chapter 9 we show the results of an experiment, where strength of the electron-phonon interaction in a gated, CVD grown, graphene was successfully tuned by the applied gate voltage. We compare these results with the theoretical calculations and show that the intra-band electronic excitations play an important role in the renormalization of the phonon energy
Style APA, Harvard, Vancouver, ISO itp.
3

Apretna, Thibault. "HgTe nanocrystals and graphene quantum dots for THz optoelectronics : intraband absorption, carrier dynamics and coherent THz emission". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS124.

Pełny tekst źródła
Streszczenie:
Bien que les applications potentielles des ondes Terahertz (THz) soient très prometteuses, leur développement est actuellement limité par le manque de sources et de détecteurs performants à ces fréquences. En effet, ce domaine spectral se situe en dehors des plages de fréquences accessibles par les dispositifs électroniques ou optiques conventionnels. La recherche de nouveaux matériaux et concepts ainsi que le développement de nouvelles technologies sont donc essentiels pour exploiter pleinement ces ondes THz. Dans ce contexte, mon travail de thèse vise à évaluer le potentiel de deux nouveaux nanomatériaux que sont les larges nanocristaux de HgTe ainsi que les larges boîtes quantiques de graphène pour le développement de dispositifs opto-électroniques opérant aux fréquences THz. Nous présentons tout d'abord une étude approfondie des propriétés optiques des nanocristaux de HgTe. Nous avons notamment démontré une large résonance dans le spectre d'absorption, centrée autour de 4.5THz. Nous avons développé un modèle microscopique et interprété cette absorption aux fréquences THz comme le résultat de multiples transitions intrabandes des porteurs confinés entre les états électroniques quantifiés. La deuxième partie de ce travail concerne l'étude de la photoréponse et de la dynamique des porteurs chauds dans les nanocristaux de HgTe. Nous rapportons un temps de recombinaison des porteurs hors-équilibre relativement long, de l'ordre de quelques picosecondes. La troisième partie, présente des mesures d'émission cohérente d'ondes THz par les nanocristaux de HgTe sous excitation optique femtoseconde. Nous y développons un formalisme décrivant les processus non-linéaires du second-ordre et nous démontrons que les phénomènes physiques mis en jeu dans l'émission cohérente THz mesurée sont les effets photo-galvanique et d'entraînement de photons (photon-drag). Enfin, la dernière partie est consacrée à des travaux théoriques et expérimentaux menés sur les propriétés optiques aux fréquences THz des boîtes quantiques de graphène
While the applications of terahertz (THz) electomagnetic waves are very promising, their development is still currently limited by the lack of efficient sources and detectors operating at these frequencies. Indeed, this spectral domain lies outside the frequency ranges accessible by conventional electronic or optical devices. The research of new materials and concepts as well as the development of novel technologies are thus essential to fully exploit these THz waves. In this context, my thesis work aims at evaluating the potential of two new nanomaterials, large HgTe nanocrystals and large graphene quantum dots (GQD), for the development of optoelectronic devices operating at THz frequencies. We first present an in-depth study of the optical properties of HgTe nanocrystals. In particular, we have demonstrated a broad resonance in the absorption spectrum, centered around 4.5THz. We have developed a microscopic model and interpreted this absorption at THz frequencies as the result of multiple intraband transitions of single carriers between quantized electronic states. The second part of this work concerns the study of the photoresponse and the dynamics of hot carriers in HgTe nanocrystals. We report a relatively long recombination time of non-equilibrium carriers, of the order of a few picoseconds. The third part presents coherent THz emission measurements from HgTe nanocrystals under femtosecond optical excitation. We develop a formalism describing the second-order nonlinear processes and we demonstrate that the physical phenomena involved in the measured THz coherent emission are the photo-galvanic and photon-drag effects. Finally, the last part is devoted to theoretical and experimental work on the optical properties at THz frequencies of graphene quantum dots
Style APA, Harvard, Vancouver, ISO itp.
4

Massabeau, Sylvain. "Optical and electronic properties of graphene quantum dots in the Terahertz spectral range". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS445.

Pełny tekst źródła
Streszczenie:
L’objectif de cette thèse est d'explorer les propriétés électroniques et optiques des boîtes quantiques de graphène (BQG) dans le domaine spectral THz. En utilisant le formalisme des liaisons fortes, nous calculons d'abord les niveaux d'énergie de BQG (diamètres de 6 à 50 nm) et analysons leurs caractéristiques. Nous calculons ensuite leur couplage à des photons de faible énergie et déterminons les spectres de probabilité d'absorption des BQG dans la gamme spectrale THz, en fonction de leur taille, de la température et du dopage. Ensuite, nous mesurons les propriétés optiques des BQG aux fréquences THz, en utilisant un système de spectroscopie THz dans le domaine temporel. Des échantillons de graphène épitaxial multicouches (GEM) sont sondés puis nanostructurés en réseaux contenant 107 BQG. Nous montrons que la réponse THz de BQG de quelques dizaines de nm de diamètre est principalement caractérisée par une large absorption autour de 6 THz, à basse et à température ambiante. Ces résultats originaux sont étayés par l'analyse théorique et sont fortement différents de ce qui est observé dans le GEM.Enfin, nous étudions les propriétés de transport électronique d’une BQG unique. La BQG est formée à partir de graphène exfolié encapsulé dans des couches de hBN, et est insérée dans un transistor à électron unique couplé à une antenne THz. On observe le régime de blocage de Coulomb et les états excités de la BQG. Enfin, nous étudions la photoréponse à des photons THz incohérents d’une BQG dans le régime de blocage de Coulomb. Ces résultats ouvrent des perspectives très intéressantes pour le développement de dispositifs THz à base de BQG, comme les lasers THz
The goal of the present thesis is to explore the electronic and optical properties of graphene quantum dots (GQDs) in the THz spectral range. Using tight-binding modelling, we first calculate the energy levels of GQDs of diameters ranging from 6 to 50 nm and analyse the different nature of these energy states. We further calculate their coupling to low energy photons and determine the absorption probability spectra in the THz spectral range. We finally explore how the size, temperature and doping of the GQDs affect their absorption spectra. Secondly, we focus on the experimental investigation of the optical properties of GQDs at THz frequencies, using THz time-domain spectroscopy. Multilayer epitaxial graphene (MEG) samples are probed and then nanostructured in 107 GQDs arrays. We show that the THz response of GQDs with diameters of few tens of nm is mainly characterised by a deep absorption around 6 THz at low and room temperature. These original outcomes are supported by the theoretical analysis and are strongly different from what is observed in MEG. Finally, we study the electronic transport properties of a single GQD in the Coulomb-blockade regime. A single GQD, made of exfoliated graphene encapsulated with hBN layers, is inserted within single electron transistor coupled to a bow-tie THz antenna. Dark transport measurements in the GQD-based transistors show Coulomb blockade regime and excited states of the GQD. Finally, we provide the photoresponse of the GQD in the Coulomb blockade regime under incoherent THz illumination. These results open very exciting perspectives for the development of GQD-based devices for THz photonic applications such as THz lasers
Style APA, Harvard, Vancouver, ISO itp.
5

Ubrig, Nicolas. "Optical properties of carbon based materials in high magnetic fields". Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1627/.

Pełny tekst źródła
Streszczenie:
La découverte des nanotubes de carbone, il y a maintenant une vingtaine d'années, a été un des moteurs de la recherche des nanotechnologies. Ces particules illustrent l'amalgame entre le monde macroscopique et le monde appelé nano. Cette discipline a également relancée la recherche sur le graphite et le carbone en général, qui atteint un nouveau sommet avec la découverte du graphène, une monocouche de graphite. Rapidement la physique des nanotubes et du graphène ont suscité l'intérêt d'être étudié sous champ magnétique avec la découverte de l'effet Aharonov-Bohm dans les nanotubes ou l'effet hall quantique dans le graphène. Cette thèse a pour but d'approfondir la connaissance des propriétés optiques des nanotubes, du graphène et du graphite sous champ magnétique intense. Pour cela nous nous interesserons dans un premier temps à la problématique des excitons sombres. Nous étudierons ensuite les propriétés magnétiques et dynamiques des tubes. La famille métallique est paramagnétique le long de son axe et diamagnétique perpendiculaire à celui-ci. La famille semiconductrice est diamagnétique par rapport à ces deux orientations mais la valeur perpendiculaire est plus élevée. De ce fait tous les nanotubes vont s'aligner parallèlement à un champ magnétique appliqué. Nous utiliserons des méthodes de spectroscopie optique pour étudier ce phénomène. La deuxième partie de la thèse consistera à examiner les propriétés optiques du graphène et du graphite et plus précisément les transitions entre niveaux de Landau sous champs intenses. La particularité du graphène est que ses porteurs de charge se comportent comme des particules relativistes avec une masse nulle. Les niveaux de Landau se trouvent modifiés avec une dépendance en racine du champ magnétique, par rapport aux systèmes deux dimensionels classiques, où l'on retrouve une dépendance linéaire comme pour l'électron libre par exemple. Ceci nous entrainera également à reéxaminer les propriétés du graphite et d'approfondir les connaissances, notamment à champ très élevé, sur ce matériau à priori bien connu et étudié dans le passé
Carbon nanotubes are unique nano-objects with highly anisotropic electrical, magnetic and optical properties. In the past years the physics of carbon nanotubes made important steps toward the comprehension of its various complex physical properties. The optical response of nanotubes is driven by excitons. Of the sixteen possible exciton states only one decays radiatively. However a magnetic field can brighten one of the dark states. The aim of the first part of this thesis investigates the issue of the brightening of dark excitons. In the second part we use the magnetic properties of single walled carbon nanotubes to investigate their dynamic alignment in a pulsed magnetic field. Semiconducting tubes are diamagnetic both along and perpendicular to their long axis but the magnitude of the perpendicular susceptibility is higher. Metallic tubes are paramagnetic along their long axis and diamagnetic perpendicular to it. This constrains SWNT to align parallel to a magnetic field. Our data will be analysed with the aid of a theoretical model based on rotational diffusion of rigid rods. In the third part we study the magneto-optical properties of epitaxially grown multi-layer graphene. The Landau levels of graphene are different from standard two dimensional electron gases. They show a sqrt{B}dependence due to the relativistic nature of their charge carriers. We measure the system at high fields and high energies to probe the limit of massless Dirac fermions. The discovery of massless relativistic particles in graphene, a mono-layer of graphite, has completely renewed the interest in graphite. As a matter of fact graphite the optical properties of graphite are best described by bi-layer graphene. We show that the magneto-transmission experiments on thin graphite are in very good agreement with an effective bi-layer model. In addition we observe a non-predicted double structure in the graphene-like transitions which is not reported before
Style APA, Harvard, Vancouver, ISO itp.
6

Solane, Pierre-Yves. "Spectroscopie optique du graphite-graphène sous champs mégagauss". Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1874/.

Pełny tekst źródła
Streszczenie:
La découverte expérimentale du graphène (monocouche de graphite) en 2004 a provoqué un grand engouement dans la communauté scientifique. Cela a également renouvelé l'intérêt pour l'étude du graphite. Les propriétés de ces deux matériaux ont largement été étudiées par le biais de différentes techniques expérimentales (transport, optique. . . ). Dans cette thèse nous démontrons que les mesures de transmission effectuées sous champ magnétiques très intenses (> 1 millions de fois le champ magnétique terrestre) sont un outil très puissant pour étudier la structure électronique du graphène et du graphite. Dans un premier temps, nous montrerons que l'asymétrie électron-trou dans le graphite est causée par le terme souvent négligé de l'énergie cinétique d'un électron libre. Ce terme, également présent dans l'Hamiltonien décrivant les propriétés électroniques du graphène, explique élégamment l'asymétrie électron trou qui y est observée. Deuxièmement, l'utilisation de nombreuses sources dans l'infrarouge et dans le visible (200meV à 2eV) nous a permis d'observer de grandes séries de transitions interbandes dans le graphite entre les quatre bandes (E3+, E3-, E1 et E2) jusqu'à 150 T et à température ambiante. La résonance au point K peut être parfaitement décrite avec le modèle du bicouche effectif et la résonance au point H correspond à celle d'une monocouche de graphène. Enfin, nous démontrerons que ces résonances peuvent être réduites à une simple mesure de la relation de dispersion décrite par la formule relativiste E2=m02v4 + p2v2, avec v la vitesse de Fermi et, où l'énergie d'une particule au repos m0v² est égale à 385 meV au point K et est nulle au point H
Since its experimental discovery in 2004, graphene (a single layer of graphite) has attracted a lot of attention. It also leads to a renewed interest in graphite. Subsequently, both these materials have extensively been studied using different experimental techniques. In this thesis we demonstrate that transmission measurements performed in extremely high magnetic field (> 1 million times the earth's magnetic field) are a very useful tool to investigate the electronic structure of graphene and graphite. In particular, we will demonstrate that electron-hole asymmetry in graphite is caused by the often neglected free-electron kinetic energy term. This term is also present in the Hamiltonian describing electronic properties of graphene, hence it will lead to an asymmetry in graphene. Additionally, using near-infrared and visible sources from 200meV to 2eV we observe strong series of interband transitions in graphite between the four interlayer split bands (E3+, E3-, E1 and E2) up to 150 T at room temperature. The K-point electron resonances can be described well using an effective bilayer graphene model and the H-point transitions correspond to monolayer graphene. It is demonstrated that this can be reduced to a single measurement of the dispersion relation which is described by the relativistic formula where E2=m02v4 + p2v2 with v the Fermi velocity and a single particle rest energy m0v² of 385 meV for the K-point electrons and zero as expected for the H-point
Style APA, Harvard, Vancouver, ISO itp.
7

Chong, Michael. "Electrically driven fluorescence of single molecule junctions". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE022/document.

Pełny tekst źródła
Streszczenie:
Les propriétés optoélectroniques de jonctions moléculaires sont étudiées par microscopie à effet tunnel (STM). Premièrement, les structures moléculaires sont synthétisées sur une surface Au(111). Puis, par manipulation, nous soulevons et suspendons une molécule entre la pointe du STM et la surface d’or pour obtenir une jonction moléculaire. En appliquant une tension entre la pointe et l'échantillon, un courant est généré, ce qui conduit à l'excitation de la molécule. Ce processus est médié par des modes de plasmons de surface localisé de la pointe. Finalement, la molécule se désexcite de manière radiative et génère un signal de fluorescence. On utilise cette technique pour étudier deux systèmes moléculaires. Dans le premier, un émetteur (porphyrin) est suspendu dans la jonction grâce à des fils organiques (oligothiophène). Ce type de jonction génère une émission de lumière étroite dont la couleur est contrôlée en sélectionnant la structure chimique de l'émetteur. Le contrôle de la largeur du pic d’émission est obtenu en détachant progressivement l'unité émettrice de la surface. On observe aussi des pics vibroniques décalés vers le rouge qui fournissent une empreinte chimique de l’émetteur, et des pics décalés vers le bleu, signe d’une deséxcitation d’un exciton non-thermalisé. Le deuxième type de jonction est composé de nano-rubans de graphène (GNRs) dont la largeur et la structure de l’arrête sont définis avec une précision atomique. Une fois suspendu dans la jonction, les GNRs qui présentent une terminaison spécifique (terminaison C) montrent un spectre d’émission de lumière avec un pic principal et deux pics vibroniques décalés vers le rouge. Le pic principale est associé à une transition intra-ruban entre un état Tamm localisé et un état delocalisé
This thesis presents a study of the optoelectronic properties of molecular junctions performed by scanning tunneling microscopy (STM). First, the molecular structures are synthesized on a Au(111) surface. Then, by manipulation we lift and suspend a molecule between the tip of the STM and the gold surface, creating a single molecule junction. By applying a voltage bias between the tip and the sample, a current is generated, which leads to the excitation of the molecule. This process is mediated by the localized surface plasmon modes of the tip. Eventually, the molecule de-excites in a radiative way, generating a fluorescence signal. We use this technique to study two different molecular junctions. First, an emitting unit (fused-porphyrin) is suspended in the junction by means of organic linkers (oligothiophene). This type of junction generates a narrow-line emission of light whose color is controlled by selecting the chemical structure of the emitting unit. Moreover, control over the linewidth is obtained by progressively detaching the emitting unit from the surface. Also, we observe red-shifted vibronic features that provide a chemical fingerprint of the emitter, and blue- shifted vibronic features that are a sign of hot-luminescence. For the second type of junctions we use graphene nanoribbons (GNRs) of atomically precise width and edge structure. When lifted in the junction, GNRs with a specific type of termination (C-terminated) exhibit a light emission spectrum with a main peak and two red-shifted vibrational features. The main peak is associated to an intra-ribbon transition between a localized state (Tamm) and a delocalized state
Style APA, Harvard, Vancouver, ISO itp.
8

Graef, Holger. "Dirac fermion optics and plasmonics in graphene microwave devices". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS624.

Pełny tekst źródła
Streszczenie:
Cette thèse porte sur trois phénomènes différents dans les propriétés de transport électronique du graphène balistique: D'abord, la réflexion totale interne des électrons est étudiée dans un réflecteur coin défini par des électrodes de grille. On démontre des effets d'optique électronique géométrique et cohérente. Le dispositif est sensible à la diffusion par les phonons. On l'utilise pour démontrer la faisabilité d'expériences d'optique de fermions de Dirac en régime hyperfréquences, envisageant des mesures du temps de vol des phonons. Deuxièmement, nous utilisons des condensateurs graphène à effet de champs pour étudier les plasmons de grande longueur d'onde avec un analyseur de réseau. Une résonance est observée à 40 GHz, correspondant à un plasmon d'une longueur d'onde de 100 μm. Ce résultat constitue un pas important vers la réalisation de dispositifs plasmoniques résonnants et vers l'étude des plasmons dans des super-réseaux bipolaires. Enfin, nous étudions la rupture de l'effet Hall quantique entier dans un échantillon de graphène bicouche. Le transport en courant continu et le bruit à 5 GHz démontrent que le champ de rupture intrinsèque peut être atteint. Sa signature est un décollage brutal du bruit, avec un facteur de Fano superpoissonien. Comme mécanisme de rupture, nous proposons l'instabilité des magnetoexcitons
This thesis addresses three different phenomena in the DC and GHz electronic transport properties of ballistic, hBN-encapsulated graphene: Firstly, the total internal reflection of electrons is investigated in a gate-defined corner reflector. Both geometric and coherent electron optics effects are demonstrated and the device is shown to be sensitive to minute phonon scattering rates. It is then used as a proof-of-concept for GHz electron optics experiments in graphene, paving the way for phonon time-of-flight measurements. Secondly, we introduce top-gated graphene field-effect capacitors as a platform to study ultra-long wavelength plasmons with a vector network analyzer. We simultaneously measure resistivity, capacitance and kinetic inductance. A resonance is observed at 40 GHz, corresponding to a plasmon of 100 µm wavelength. This result sets a milestone for the realization of resonant plasmonic devices and the investigation of plasmon propagation in bipolar superlattices. Finally, we move our attention to the quantum Hall breakdown in a bilayer graphene sample. DC transport and GHz noise measurements show that the elusive intrinsic breakdown field can be reached in graphene. Its signature is an abrupt increase of noise, with a super-Poissonian Fano factor. A magnetoexciton instability is proposed as the origin of breakdown
Style APA, Harvard, Vancouver, ISO itp.
9

Essaddek, Abderrahim. "Sur l'insertion des alliages césium-antimoine dans le graphite". Nancy 1, 1989. http://www.theses.fr/1989NAN10057.

Pełny tekst źródła
Streszczenie:
Préparation de ces nouveaux composés lamellaires pour lesquels on observe cinq types de feuillets métalliques insérés qui se distinguent les uns des autres par des épaisseurs bien caractéristiques, pour des stades compris entre 1 et 4. Étude par diffraction de rayons X des organisations du feuillet inséré le long de l'axe C et parallélement aux plans graphitiques : le feuillet est toujours à plusieurs couches, mais leur nombre varie suivant le type de feuillee ; il peut être commensurable, partiellement commensurable ou incommensurable avec les plans de graphène adjacents ; les diverses phases duy 1er stade, observées à température ambiante, dérivent d'une phase unique stable à T>435**(O)C. Mesure de conductivité électrique parallélement aux feuillets, où elle est métallique, et perpendiculairement aux feuillets, ou elle est complexe et résulterait de processus encore mal connus. Absence de supraconductivité jusqu'à 1,4 K
Style APA, Harvard, Vancouver, ISO itp.
10

Lapointe, François. "Propriétés optiques dans l'infrarouge des nanotubes de carbone et du graphène". Thèse, 2014. http://hdl.handle.net/1866/10539.

Pełny tekst źródła
Streszczenie:
Les nanotubes de carbone et le graphène sont des nanostructures de carbone hybridé en sp2 dont les propriétés électriques et optiques soulèvent un intérêt considérable pour la conception d’une nouvelle génération de dispositifs électroniques et de matériaux actifs optiquement. Or, de nombreux défis demeurent avant leur mise en œuvre dans des procédés industriels à grande échelle. La chimie des matériaux, et spécialement la fonctionnalisation covalente, est une avenue privilégiée afin de résoudre les difficultés reliées à la mise en œuvre de ces nanostructures. La fonctionnalisation covalente a néanmoins pour effet de perturber la structure cristalline des nanostructures de carbone sp2 et, par conséquent, d’affecter non seulement lesdites propriétés électriques, mais aussi les propriétés optiques en émanant. Il est donc primordial de caractériser les effets des défauts et du désordre dans le but d’en comprendre les conséquences, mais aussi potentiellement d’en exploiter les retombées. Cette thèse traite des propriétés optiques dans l’infrarouge des nanotubes de carbone et du graphène, avec pour but de comprendre et d’expliquer les mécanismes fondamentaux à l’origine de la réponse optique dans l’infrarouge des nanostructures de carbone sp2. Soumise à des règles de sélection strictes, la spectroscopie infrarouge permet de mesurer la conductivité en courant alternatif à haute fréquence des matériaux, dans une gamme d’énergie correspondant aux vibrations moléculaires, aux modes de phonons et aux excitations électroniques de faible énergie. Notre méthode expérimentale consiste donc à explorer un espace de paramètres défini par les trois axes que sont i. la dimensionnalité du matériau, ii. le potentiel chimique et iii. le niveau de désordre, ce qui nous permet de dégager les diverses contributions aux propriétés optiques dans l’infrarouge des nanostructures de carbone sp2. Dans un premier temps, nous nous intéressons à la spectroscopie infrarouge des nanotubes de carbone monoparois sous l’effet tout d’abord du dopage et ensuite du niveau de désordre. Premièrement, nous amendons l’origine couramment acceptée du spectre vibrationnel des nanotubes de carbone monoparois. Par des expériences de dopage chimique contrôlé, nous démontrons en effet que les anomalies dans lespectre apparaissent grâce à des interactions électron-phonon. Le modèle de la résonance de Fano procure une explication phénoménologique aux observations. Ensuite, nous établissons l’existence d’états localisés induits par la fonctionnalisation covalente, ce qui se traduit optiquement par l’apparition d’une bande de résonance de polaritons plasmons de surface (nanoantenne) participant au pic de conductivité dans le térahertz. Le dosage du désordre dans des films de nanotubes de carbone permet d’observer l’évolution de la résonance des nanoantennes. Nous concluons donc à une segmentation effective des nanotubes par les greffons. Enfin, nous montrons que le désordre active des modes de phonons normalement interdits par les règles de sélection de la spectroscopie infrarouge. Les collisions élastiques sur les défauts donnent ainsi accès à des modes ayant des vecteurs d’onde non nuls. Dans une deuxième partie, nous focalisons sur les propriétés du graphène. Tout d’abord, nous démontrons une méthode d’électrogreffage qui permet de fonctionnaliser rapidement et à haute densité le graphène sans égard au substrat. Par la suite, nous utilisons l’électrogreffage pour faire la preuve que le désordre active aussi des anomalies dépendantes du potentiel chimique dans le spectre vibrationnel du graphène monocouche, des attributs absents du spectre d’un échantillon non fonctionnalisé. Afin d’expliquer le phénomène, nous présentons une théorie basée sur l’interaction de transitions optiques intrabandes, de modes de phonons et de collisions élastiques. Nous terminons par l’étude du spectre infrarouge du graphène comportant des îlots de bicouches, pour lequel nous proposons de revoir la nature du mécanisme de couplage à l’œuvre à la lumière de nos découvertes concernant le graphène monocouche.
Carbon nanotubes and graphene are sp2 hybridized carbon nanostructures which electrical and optical properties raise considerable interest for the design of a new generation of electronic devices and optically active materials. However, many challenges remain before their implementation in industrial processes on a large scale. Materials chemistry, especially covalent functionalization, is a privileged avenue to resolve the difficulties related to the processing of these nanostructures. Covalent functionalization, however, disrupts the sp2 carbon nanostructures’ crystalline structure, and pertubs not only said electrical properties, but also the deriving optical properties. It is therefore essential to characterize the effects of defects and disorder in order to understand their consequences, but also to potentially exploit the benefits. This thesis deals with the optical properties in the infrared of carbon nanotubes and graphene, with the aim to understand and explain the fundamental mechanisms at the origin of the optical response in the infrared of sp2 carbon nanostructures. Subject to strict selection rules, infrared spectroscopy measures the high frequency AC conductivity of materials in an energy range corresponding to molecular vibrations, phonon modes and low energy electronic excitations. Our experimental method is therefore to explore a parameter space defined by the three axes that are i. the dimensionality of the material, ii. the chemical potential, and iii. the disorder level, which allows us to identify the various contributions to optical properties in the infrared of sp2 carbon nanostructures. At first, we focus on the infrared spectroscopy of single-walled carbon nanotubes as a function of doping and disorder level. We start by amending the commonly accepted origin of single-walled carbon nanotubes vibrational spectra. Using controlled chemical doping experiments, we show that the anomalies in the carbon nanotube spectra appear through electron-phonon interactions. The Fano resonance model provides a phenomenological explanation for the observations. Then, we establish the existence of localized states induced by covalent functionalization, which appear as a surface plasmon polariton resonance (nanoantenna) contributing to the terahertz conductivity peak. Control of the disorder level in carbon nanotube films allows us to observe the evolution of the nanoantenna resonance. We therefore conclude to an effective segmentation of the nanotubes by the grafts. Finally, we show that disorder activates phonon modes that are usually forbidden by infrared spectroscopy’s selection rules. Disorder-induced infrared activity originates from elastic collisions on defects that give access to phonon modes with non-zero wave vectors. In a second part, we focus on the properties of graphene. First, we demonstrate an electrografting method to rapidly functionalize graphene with high-density, regardless of the substrate. Subsequently, we use electrografting to show that disorder activates chemical potential dependent anomalies in the vibrational spectra of single-layer graphene. These anomalies are absent in the spectra of pristine samples. In order to explain this phenomenon, we present a theory based on the interaction of intraband optical transitions, phonon modes and elastic collisions. We conclude by studying the infrared spectra of graphene with bilayer islands, for which we propose to review the nature of the coupling mechanism in the light of our findings on single-layer graphene.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Graphène – Propriétés optiques"

1

Graphene Science Handbook. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Graphene Science Handbook. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Graphene Science Handbook. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Graphene Science Handbook. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ali, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Fabrication Methods. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ali, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Applications and Industrialization. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ali, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Applications and Industrialization. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ali, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Size-Dependent Properties. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Graphene Science Handbook: Mechanical and Chemical Properties. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ali, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Nanostructure and Atomic Arrangement. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii