Gotowa bibliografia na temat „Graphene Polymer Systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene Polymer Systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Graphene Polymer Systems"
Kausar, Ayesha, Ishaq Ahmad i Patrizia Bocchetta. "High-Performance Corrosion-Resistant Polymer/Graphene Nanomaterials for Biomedical Relevance". Journal of Composites Science 6, nr 12 (1.12.2022): 362. http://dx.doi.org/10.3390/jcs6120362.
Pełny tekst źródłaNjoroge, Jean, Arnab Chakrabarty i Tahir Çağın. "Shockwave Response of Polymer and Polymer Nanocomposites". Materials Science Forum 856 (maj 2016): 64–69. http://dx.doi.org/10.4028/www.scientific.net/msf.856.64.
Pełny tekst źródłaKausar, Ayesha, Ishaq Ahmad, M. H. Eisa i Malik Maaza. "Graphene Nanocomposites in Space Sector—Fundamentals and Advancements". C 9, nr 1 (3.03.2023): 29. http://dx.doi.org/10.3390/c9010029.
Pełny tekst źródłaAhmed, Jubair, Tanveer A. Tabish, Shaowei Zhang i Mohan Edirisinghe. "Porous Graphene Composite Polymer Fibres". Polymers 13, nr 1 (27.12.2020): 76. http://dx.doi.org/10.3390/polym13010076.
Pełny tekst źródłaRAMU, I., Battina N. MALLESWARARAO, J. CHANDRA SEKHAR, M. VENU i P. SENTHIL KUMAR. "Study on Free Vibration Analysis of a Rotating Fibre-Graphene-Reinforced Hybrid Polymer Composites Pre-Twist Shel". INCAS BULLETIN 15, nr 2 (9.06.2023): 149–59. http://dx.doi.org/10.13111/2066-8201.2023.15.2.14.
Pełny tekst źródłaChen, Shih-Hsiung, Naveed Ahmad i Chung-Feng Jeffrey Kuo. "Development of Multifunctional Nano-Graphene-Grafted Polyester to Enhance Thermal Insulation and Performance of Modified Polyesters". Polymers 14, nr 18 (13.09.2022): 3821. http://dx.doi.org/10.3390/polym14183821.
Pełny tekst źródłaYasinzai, Maimoona, Ghulam Mustafa, Nazia Asghar, Ikram Ullah, Muhammad Zahid, Peter A. Lieberzeit, Dongxue Han i Usman Latif. "Ion-Imprinted Polymer-Based Receptors for Sensitive and Selective Detection of Mercury Ions in Aqueous Environment". Journal of Sensors 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/8972549.
Pełny tekst źródłaRissanou, Anastassia, Apostolos Konstantinou i Kostas Karatasos. "Morphology and Dynamics in Hydrated Graphene Oxide/Branched Poly(ethyleneimine) Nanocomposites: An In Silico Investigation". Nanomaterials 13, nr 12 (15.06.2023): 1865. http://dx.doi.org/10.3390/nano13121865.
Pełny tekst źródłaRissanou, N., P. Bačová, A. J. Power i V. Harmandaris. "Atomistic Molecular Dynamics Simulations of Polymer/Graphene Nanostructured Systems". Materials Today: Proceedings 5, nr 14 (2018): 27472–81. http://dx.doi.org/10.1016/j.matpr.2018.09.066.
Pełny tekst źródłaZhang, Jian Wei, Cai Jiang, Gang Shi i Da Zhi Jiang. "Diffusion of Epoxy Molecules on the Chemically Modified Graphene: A Molecular Dynamics Simulation Study". Materials Science Forum 817 (kwiecień 2015): 803–8. http://dx.doi.org/10.4028/www.scientific.net/msf.817.803.
Pełny tekst źródłaRozprawy doktorskie na temat "Graphene Polymer Systems"
Chatterjee, Sanjukta. "Structural and Physical Effects of Carbon Nanofillers in Thermoplastic and Thermosetting Polymer Systems". Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-171449.
Pełny tekst źródłaZhang, Yan. "Study of interfacial interaction effects in different systems including polymer nanocomposites and protein adsorption". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384870177.
Pełny tekst źródłaLi, Wei. "Composite polymer/graphite/oxide electrode systems for supercapacitors". University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439309266.
Pełny tekst źródłaМаксимцев, Ю. Р., i І. С. Кректун. "Залежність електрофізичних властивостей нанокомпозитів на основі ПВХ". Thesis, Сумський державний університет, 2017. http://essuir.sumdu.edu.ua/handle/123456789/64308.
Pełny tekst źródłaKe, Kun-Cheng, i 柯坤呈. "Development of Rolling and Curved Surface Hot Embossing System Using Ultra-thin Flexible Electronic Heating Elements of Graphene Polymeric Composite in Polymeric Components Fabrication". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/hag4sb.
Pełny tekst źródła國立臺灣大學
機械工程學研究所
106
The polymer process faces the problems of slow temperature rise and uneven temperature. Increasing the heating rate and improving the temperature uniformity become an urgent challenge. In this study, a flexible large-area graphene-composite heating film was developed .The heating films were then applied to the processes of curved micro-hot embossing and micro-hot rolling embossing. First, the effects of different colloids on dispersibility, resistance, sheet resistance and flexible testing were investigated to determine the feasibility of flexible flexible heaters. Then, a flexible graphene composite flat panel heater was developed. The results show that as the voltage increases, the heating rate and steady-state temperature increases. The flexible heater was used to the hot embossing on the curved substrate. With the power of 25V, the temperature was raised from 40 ° C to 160 ° C in 130s. Stable temperature can be maintained. The V-shaped microstructures are replicated with replication rate higher than 97%. A roller heater was developed for roller hot embossing. The heater was fabricated by wire bar coating of graphene polymer composite onto the inner wall of the hollow roller. The electrothermal property, the four-quadrant dynamic temperature uniformity, the lateral dynamic temperature uniformity and the steady-state temperature and voltage are tested by adjusting the voltage. The four-quadrant dynamic temperature control temperature is controlled within 2.8 °C, and the lateral dynamic temperature result is controlled within 1.2 °C. The roller heater was used in micro-hot roller embossing to fabricate microlens array and V-type structures. The relationship between pressure, working temperature and feed rate on forming were investagated. Under the fixed feed rate parameter, the height and diameter of the microlens array were all larger than original sizes of the mold. The V-shaped structure is formed at the fixed rolling speed rate parameter. With the embossing temperature fixed at 120 ° C, the replication rate were higher than 97%. Finally, the application of V-type structure to light intensity enhancement was verified. This study proved the feasibility and potential of the graphene polymer composite heater successfully.
Αναστασίου, Αλέξανδρος. "Σχέσεις δομής και ιξωδοελαστικών, μηχανικών και συγκολλητικών ιδιοτήτων πολυακρυλικών σε στερεά υποστρώματα μέσω ατομιστικών προσομοιώσεων". Thesis, 2013. http://hdl.handle.net/10889/7975.
Pełny tekst źródłaΗ παρούσα Διδακτορική Διατριβή εστιάζει στη μελέτη της σχέσης μεταξύ δομής και μακροσκοπικών φυσικών ιδιοτήτων υλικών από πολυακρυλικά μέσω μίας λεπτομερούς προσομοίωσης στον υπολογιστή με τη μέθοδο της Μοριακής Δυναμικής (ΜΔ), σε συνδυασμό με ένα πολύ επακριβές πεδίο δυνάμεων (το Dreiding) σε ατομιστική λεπτομέρεια. Οι κύριες ερευνητικές έννοιες καθώς και οι στόχοι συζητιούνται και αναλύονται σε τρία ξεχωριστά μέρη. Στο πρώτο μέρος, ατομιστικές απεικονίσεις δύο προτύπων πίεσο-ευαίσθητων συγκολλητικών υλικών (acrylic pressure sensitive adhesives ή PSAs), του ατακτικού πολυ-βουτυλικού-ακρυλικού εστέρα (poly(n-BA)) και του συμπολυμερούς του με ακρυλικό οξύ (poly(n-BA-co-AA)), τόσο μακριά όσο και κοντά σε υποστρώματα σίλικας (SiO2) και α-φερρίτη (α-Fe), μελετήθηκαν στη βάση ενός φάσματος ιδιοτήτων (θερμοδυναμικές, δομικές, ιξωδοελαστικές, δυναμικές, και συγκολλητικές), όπως και η μηχανική τους απόκριση υπό συνθήκες μονοαξονικής εκτατικής παραμόρφωσης. Στο δεύτερο μέρος παρουσιάζονται τα αποτελέσματα που εξήχθησαν από μία ιεραρχική μεθοδολογία προσομοίωσης που οδήγησε στην πρόβλεψη της φασικής συμπεριφοράς και των μηχανικών ιδιοτήτων νανοσύνθετων πολυμερικών υλικών (polymer nanocomposites ή PNCs) βασισμένων στο συνδιοτατκτικό πολυ-μεθακρυλικό μεθυλεστέρα (syndiotactic poly(methyl methacrylate) ή sPMMA), ενισχυμένο με ομοιόμορφα διεσπαρμένα φύλλα γραφενίου (graphene sheets) ή σωματίδια φουλερενίου (fullerene particles). Στο τρίτο μέρος, υποκινούμενοι από τη χρήση των ακρυλικών πολυμερών στο σχεδιασμό μεμβρανών με ενσωματωμένους ευθυγραμμισμένους νανοσωλήνες άνθρακα (ΝΑ, carbon nanotubes ή CNTs) σε διάφορες τεχνολογίες διαχωρισμού μορίων (με έμφαση στον καθαρισμό του νερού), παρουσιάζουμε αποτελέσματα από προσομοιώσεις, για τη νανο-ρόφηση και την κινητικότητα τεσσάρων διαφορετικών μικρών μορίων (water, tyrosol, vanilic acid, και p-coumaric acid) στο εσωτερικό λείων μονο-στρωματικών ΝΑ (single-wall CNTs ή SWCNTs). Τα θέματα που εξετάζονται περιλαμβάνουν τη μοριακή διευθέτηση και τη διάταξη στο εσωτερικό Ν.Α. των τεσσάρων μορίων, το μέσο χρόνο παραμονής τους, καθώς και τους αξονικούς συντελεστές διάχυσής του, συναρτήσει της διαμέτρου και του μήκους των ΝΑ.
Części książek na temat "Graphene Polymer Systems"
Sur, Ujjal K. "Graphene and Graphene-Based Polymer Nanocomposites: the New Wonder Materials of the Nanoworld". W Processing and Characterization of Multicomponent Polymer Systems, 101–14. Toronto : Apple Academic Press, 2019.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469794-6.
Pełny tekst źródłaNakhaei, Mohammad Reza, Ghasem Naderi i Mir Hamid Reza Ghoreishy. "Microstructure and Mechanical Properties of Nanocomposite Based on PA6/NBR/Graphene". W Eco-friendly and Smart Polymer Systems, 320–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_76.
Pełny tekst źródłaFarhanmoghaddam, Fatemeh, i Azizeh Javadi. "Study on Rheology, Crystallinity and Electrical Resistance of Poly(Lactic Acid)/Graphene Oxide Nanocomposites". W Eco-friendly and Smart Polymer Systems, 71–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_18.
Pełny tekst źródłaSadroddini, Mohsen, i Mehdi Razzaghi-Kashani. "Dielectric Properties of Polydimethylsiloxane (PDMS) Composites Containing Hybrid Silica-Decorated Reduced-Graphene Oxide (SiO2@rGO)". W Eco-friendly and Smart Polymer Systems, 442–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_107.
Pełny tekst źródłaMirzaee, Ramin, i Ahmad Aref Azar. "Effect of Compatibilizers on Polyamide 6 and Styrene-Butadiene Rubber Blend: Graphene Oxide and Glycidyl Methacrylate". W Eco-friendly and Smart Polymer Systems, 469–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_114.
Pełny tekst źródłaRezvani Moghaddam, Amir, Milad Kamkar, Zahra Ranjbar, Uttandaraman Sundararaj i Ali Jannesari. "Effect of Low-Functionalized Graphene Oxide on the Rheological and Electrical Properties of Water-Based Epoxy Coatings". W Eco-friendly and Smart Polymer Systems, 166–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_40.
Pełny tekst źródłaNaseem, Z., K. Sagoe-Crentsil i W. Duan. "Graphene-Induced Nano- and Microscale Modification of Polymer Structures in Cement Composite Systems". W Lecture Notes in Civil Engineering, 527–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_56.
Pełny tekst źródłaOliaei, Mitra, i Mohammad Yousefi. "Synthesis of Pyrolytic Carbon from Polyethylene Terephthalate on Graphite Substrate". W Eco-friendly and Smart Polymer Systems, 533–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_129.
Pełny tekst źródłaVan Hemelrijck, D., L. Schillemans, I. Daerden, F. De Roey i F. Boulpaep. "The Use of Thermoelastic Emission Techniques (SPATE) for Damage Analysis of Graphite Epoxy Composites". W Durability of Polymer Based Composite Systems for Structural Applications, 325–35. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3856-7_24.
Pełny tekst źródłaBarsukov, V. Z., V. G. Khomenko, A. S. Katashinskii i T. I. Motronyuk. "NEW CONCEPT FOR THE METAL-AIR BATTERIES USING COMPOSITES: CONDUCTING POLYMERS / EXPANDED GRAPHITE AS CATALYSTS". W New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, 89–104. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4812-2_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Graphene Polymer Systems"
Gund, Ved, i Amit Lal. "Graphene-On-Polymer Flexible Vaporizable Sensor". W 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021. http://dx.doi.org/10.1109/mems51782.2021.9375341.
Pełny tekst źródłaRissanou, Anastassia N., i Vagelis Harmandaris. "A molecular dynamics study of polymer/graphene interfacial systems". W TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876805.
Pełny tekst źródłaRoy, Ajit K., V. Varshney, S. Ganguli, S. Sihn, J. Lee i B. Farmer. "Atomistic Scale Thermal Transport in Amorphous Materials and Its Interfaces". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44656.
Pełny tekst źródłaWang, Long, Kenneth J. Loh, Ramin Mousacohen i Wei-Hung Chiang. "Printed Graphene-Based Strain Sensors for Structural Health Monitoring". W ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3839.
Pełny tekst źródłaGund, V., A. Ruyack, K. Camera, S. Ardanuc, C. Ober i A. Lal. "Multi-modal graphene polymer interface characterization platform for vaporizable electronics". W 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. http://dx.doi.org/10.1109/memsys.2015.7051098.
Pełny tekst źródłaLiu, Yumeng, Jiyoung Chang i Liwei Lin. "A flexible graphene FET gas sensor using polymer as gate dielectrics". W 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2014. http://dx.doi.org/10.1109/memsys.2014.6765617.
Pełny tekst źródłaBehfar, K., R. Naghdabadi, A. Vafai i H. E. Estekanchi. "Nanoscale Vibrational Analysis of an Embedded Multi-Layered Graphene Sheet". W ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58629.
Pełny tekst źródłaANILAL, ASHISH, JUSTIN BENDESKY, SEHEE JEONG, STEPHANIE S. LEE i MICHAEL BOZLAR. "EFFECTS OF GRAPHENE ON TWISTING OF HIGH DENSITY POLYETHYLENE". W Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36468.
Pełny tekst źródłaWang, Ming-Hao, Kei Nikaido, Yechan Kim, Bo-Wen Ji, Hong-Chang Tian, Xiao-Yang Kang, Chun-Sheng Yang i in. "Flexible cylindrical neural probe with graphene enhanced conductive polymer for multi-mode BCI applications". W 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2017. http://dx.doi.org/10.1109/memsys.2017.7863453.
Pełny tekst źródłaRao, M. N., R. Schmidt i K. U. Schröder. "Forced Vibration Analysis of FG-Graphene Platelet Reinforced Polymer Composite Shells Bonded With Piezoelectric Layers Considering Electroelastic Nonlinearities". W ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-7978.
Pełny tekst źródłaRaporty organizacyjne na temat "Graphene Polymer Systems"
Brossia. L52119 Comparative Consumption Rates of Impressed Current Cathodic Protection Anodes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 2004. http://dx.doi.org/10.55274/r0010953.
Pełny tekst źródła