Gotowa bibliografia na temat „Graphene - Physical Properties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene - Physical Properties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Graphene - Physical Properties"
Wakabayashi, Katsunori. "Physical properties of nano-graphene". TANSO 2010, nr 243 (2010): 116–20. http://dx.doi.org/10.7209/tanso.2010.116.
Pełny tekst źródłaWakabayashi, Katsunori. "Physical properties of nano-graphene". Carbon 48, nr 14 (listopad 2010): 4216. http://dx.doi.org/10.1016/j.carbon.2010.06.071.
Pełny tekst źródłaMurav’ev, V. V., i V. M. Mishchenka. "Ab-initio simulation of hydrogenated graphene properties". Doklady BGUIR 19, nr 8 (1.01.2022): 5–9. http://dx.doi.org/10.35596/1729-7648-2021-19-8-5-9.
Pełny tekst źródłaWei, Weili, i Xiaogang Qu. "Extraordinary Physical Properties of Functionalized Graphene". Small 8, nr 14 (4.06.2012): 2138–51. http://dx.doi.org/10.1002/smll.201200104.
Pełny tekst źródłaLangston, Xavier, i Keith E. Whitener. "Graphene Transfer: A Physical Perspective". Nanomaterials 11, nr 11 (25.10.2021): 2837. http://dx.doi.org/10.3390/nano11112837.
Pełny tekst źródłaDe Sanctis, Adolfo, Jake Mehew, Monica Craciun i Saverio Russo. "Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance". Materials 11, nr 9 (18.09.2018): 1762. http://dx.doi.org/10.3390/ma11091762.
Pełny tekst źródłaWei, Bing Wei, Dong Qu, Chun Feng Hu, Fang Zhi Li, Tian Liang Zhou, Rong Jun Xie i Zhi Ming Zhou. "Synthesis and Physical Properties of Graphene Nanosheets Reinforced Copper Composites". Advanced Materials Research 833 (listopad 2013): 310–14. http://dx.doi.org/10.4028/www.scientific.net/amr.833.310.
Pełny tekst źródłaFuhrer, Michael S., Chun Ning Lau i Allan H. MacDonald. "Graphene: Materially Better Carbon". MRS Bulletin 35, nr 4 (kwiecień 2010): 289–95. http://dx.doi.org/10.1557/mrs2010.551.
Pełny tekst źródłaHua, Lei. "Enhanced Physical Properties of PEO /GRAPHENE Composites". Journal of Physics: Conference Series 1798, nr 1 (1.02.2021): 012010. http://dx.doi.org/10.1088/1742-6596/1798/1/012010.
Pełny tekst źródłaNORIMATSU, Wataru. "Structural and Physical Properties of Epitaxial Graphene". Nihon Kessho Gakkaishi 61, nr 1 (28.02.2019): 35–42. http://dx.doi.org/10.5940/jcrsj.61.35.
Pełny tekst źródłaRozprawy doktorskie na temat "Graphene - Physical Properties"
Hills, Romilly D. Y. "Physical properties of graphene nano-devices". Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17993.
Pełny tekst źródłaDimov, Dimitar. "Fundamental physical properties of graphene reinforced concrete". Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/34648.
Pełny tekst źródłaAlsharari, Abdulrhman. "Tailoring Physical Properties of Graphene by Proximity Effects". Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1525857318688345.
Pełny tekst źródłaLi, Hu. "Covalent Graphene Functionalization for the Modification of Its Physical Properties". Doctoral thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-314176.
Pełny tekst źródłaMalec, Christopher Evan. "Transport in graphene tunnel junctions". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41140.
Pełny tekst źródłaBrogi, Lorenzo. "Effects of low-environmental impact graphene on paints: chemical and physical properties". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24415/.
Pełny tekst źródłaBaker, Taleb. "Molecular Computer Simulations of Graphene oxide intercalated with methanol: Swelling Properties and Interlayer Structure". Thesis, Umeå universitet, Institutionen för fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-135941.
Pełny tekst źródłaRobert, Pablo T. [Verfasser], i H. von [Akademischer Betreuer] Löhneysen. "Physical properties of carbon nanotube, graphene junctions / Pablo T. Robert. Betreuer: H. von Löhneysen". Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1032243104/34.
Pełny tekst źródłaOrlando, Fabrizio. "Physical Properties and Functionalization of Low-Dimensional Materials". Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9968.
Pełny tekst źródłaRecent years have witnessed fast advancements in the research on graphene, which is one of the most active fields in condensed matter physics, chemistry and materials science. The rising interest of the scientific community in graphene, motivated by its fascinating properties and wide range of potential applications, has triggered substantial interest also on other two-dimensional (2D) atomic crystals, and particularly on hexagonal boron nitride (h-BN). In spite of much effort, a number of challenges still awaits the scientific community before the full potential of 2D atomic crystals can be exploited, such as the development of reliable methods for the growth of high-quality graphene and h-BN single layers or the possibility to tune the graphene electronic structure. The research activity I have been pursuing faces these requirements by focusing on the growth of graphene and h-BN on transition metal surfaces – which appears as the most direct route towards a scalable production of single layers with low concentration of defects – and the investigation of fundamental properties related to the presence of the metal support, but also tackles issues which have a direct link to the fabrication of carbonbased devices. In this regard, one of the first targets has been to shed light on the morphology and the electronic structure of h-BN on Ir(111), and to improve the growth strategy for the synthesis of high-quality h-BN layers. I have subsequently turned my attention to the fine tuning of graphene electronic properties by tailoring the graphene-substrate interaction through intercalation of foreign atoms at the metal interface. This was investigated in the extreme situations of weak (Ir) and strong (Ru) coupling of graphene with the metal support. I have also focused on an aspect which is related to a specific technological issue, that is, the development of an approach for the direct synthesis of graphene on insulating oxide layers. Lastly, the structural geometry of single layer graphene functionalized with nitrogen atoms, which is considered as one of the most promising approaches to manipulate graphene chemistry and induce n-doping, was also addressed. The combined use of several surface science experimental techniques has been proved to be of a powerful approach to achieve the targets of this project, having given access to the understanding of different properties of the systems under investigation.
XXVI Ciclo
1985
Hocker, John-andrew Samuel. "Molecular and Performance Properties of Poly(Amides & Imides) and the Use of Graphene Oxide Nano-Particles for Improvement". W&M ScholarWorks, 2016. https://scholarworks.wm.edu/etd/1477068376.
Pełny tekst źródłaKsiążki na temat "Graphene - Physical Properties"
Li, Linfei. Fabrication and Physical Properties of Novel Two-dimensional Crystal Materials Beyond Graphene: Germanene, Hafnene and PtSe2. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1963-5.
Pełny tekst źródłaZabel, Hartmut. Graphite Intercalation Compounds II: Transport and Electronic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Znajdź pełny tekst źródłaMartin, Long, Stahl Mark i United States. National Aeronautics and Space Administration., red. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródłaservice), SpringerLink (Online, red. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaA, Teichman Louis, i Langley Research Center, red. Optical properties of sputtered aluminum on graphite/epoxy composite material. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Znajdź pełny tekst źródłaTing, Yu, Wu Yihong i Shen Zexiang. Two-Dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications. Pan Stanford Publishing, 2014.
Znajdź pełny tekst źródłaLi, Linfei. Fabrication and Physical Properties of Novel Two-dimensional Crystal Materials Beyond Graphene: Germanene, Hafnene and PtSe2. Springer, 2020.
Znajdź pełny tekst źródłaLi, Linfei. Fabrication and Physical Properties of Novel Two-Dimensional Crystal Materials Beyond Graphene: Germanene, Hafnene and PtSe2. Springer Singapore Pte. Limited, 2021.
Znajdź pełny tekst źródłaSaito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus i M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.
Pełny tekst źródłaGraphite Intercalation Compounds II: Transport and Electronic Properties. Springer, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Graphene - Physical Properties"
Wolf, E. L. "Physical and Electrical Properties of Graphene". W Applications of Graphene, 1–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03946-6_1.
Pełny tekst źródłaKrepel, Dana, i Oded Hod. "Physical Properties of Graphene Nanoribbons: Insights from First-Principles Studies". W Graphene Chemistry, 51–77. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118691281.ch4.
Pełny tekst źródłaKravets, V. G., R. R. Nair, P. Blake, L. A. Ponomarenko, I. Riaz, R. Jalil, S. Anisimova, A. N. Grigorenko, K. S. Novoselov i A. K. Geim. "Optics of Flat Carbon – Spectroscopic Ellipsometry of Graphene Flakes". W Physical Properties of Nanosystems, 3–9. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0044-4_1.
Pełny tekst źródłaMoharana, Srikanta, Bibhuti B. Sahu, Lipsa Singh i Ram Naresh Mahaling. "Graphene-Based Polymer Composites: Physical and Chemical Properties". W Defect Engineering of Carbon Nanostructures, 159–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94375-2_7.
Pełny tekst źródłaMondal, Titash, Anil K. Bhowmick, Ranjan Ghosal i Rabindra Mukhopadhyay. "Graphene-Based Elastomer Nanocomposites: Functionalization Techniques, Morphology, and Physical Properties". W Designing of Elastomer Nanocomposites: From Theory to Applications, 267–318. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/12_2016_5.
Pełny tekst źródłaSingh, Ramesh Kumar, Naresh Nalajala, Tathagata Kar i Alex Schechter. "Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties". W Carbon Nanostructures, 139–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30207-8_6.
Pełny tekst źródłaIlyasov, Victor V., Besik C. Meshi, Nguyen V. Chuong, Igor V. Ershov, Inna G. Popova i Nguyen D. Chien. "Modulation the Band Structure and Physical Properties of the Graphene Materials with Electric Field and Semiconductor Substrate". W Springer Proceedings in Physics, 279–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26324-3_20.
Pełny tekst źródłaKoshino, Mikito, i Tsuneya Ando. "Electronic Properties of Monolayer and Multilayer Graphene". W Physics of Graphene, 173–211. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02633-6_6.
Pełny tekst źródłaHatsugai, Yasuhiro, i Hideo Aoki. "Graphene: Topological Properties, Chiral Symmetry and Their Manipulation". W Physics of Graphene, 213–50. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02633-6_7.
Pełny tekst źródłaSun, Xiaowei, Miao Gao, Honghong Zhou, Jing Lv i Zhaoyang Ding. "Influence of Fiber on Properties of Graphite Tailings Foam Concrete". W Lecture Notes in Civil Engineering, 508–15. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_46.
Pełny tekst źródłaStreszczenia konferencji na temat "Graphene - Physical Properties"
Russo, P., D. Acierno, F. Capezzuto, G. G. Buonocore, L. Di Maio i M. Lavorgna. "Thermoplastic polyurethane/graphene nanocomposites: The effect of graphene oxide on physical properties". W THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937308.
Pełny tekst źródłaAtasever, Ö., M. D. Özdemir, B. Özdemir, Z. Yarar i M. Özdemir. "Calculation of electronic properties of multilayer graphene with Monte Carlo method". W 9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4944166.
Pełny tekst źródłaAlali Almaadeed, Mariam, Noorunnisa Khanam Patan, Mabrouk Ouederni, Eileen Harkin Jones i Beatriz Mayoral. "New Processing Technique To Improve Physical And Mechanical Properties Of Graphene Nanocomposites". W Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.eepp0726.
Pełny tekst źródłaAdigoppula, Vinay K., Waseem Khan, Rajib Anwar, Avni A. Argun i R. Asmatulu. "Graphene Based Nafion® Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62751.
Pełny tekst źródłaJin Taek Choi, Kwang Sun Ryu, Hyung-il Lee, Han Mo Jeong, Cheol Min Shin i Jung Ho Kim. "Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on the physical properties". W 2010 International Forum on Strategic Technology (IFOST). IEEE, 2010. http://dx.doi.org/10.1109/ifost.2010.5668002.
Pełny tekst źródłaTsegaye, Mikiyas S., Patrick E. Hopkins, Avik W. Ghosh i Pamela M. Norris. "Calculating the Phonon Modes of Graphene Using the 4th Nearest Neighbor Force Constant Method". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66726.
Pełny tekst źródłaJURMANOVÁ, Jana, Ondřej JAŠEK, Jozef TOMAN, Miroslav ŠNÍRER i Michal KALINA. "INFLUENCE OF ELECTRON BEAM IRRADIATION ON PHYSICAL PROPERTIES OF MICROWAVE PLASMA SYNTHESIZED GRAPHENE NANOSHEETS". W NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8453.
Pełny tekst źródłaWang, Tianyu, Dayu Li, Yicen Hou i Guixin Zhang. "Molecular Dynamics Simulation of Key Physical Properties of Graphene Oxide / Epoxy Resin Nanocomposite Dielectrics". W 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. http://dx.doi.org/10.1109/ichve49031.2020.9279620.
Pełny tekst źródłaANILAL, ASHISH, JUSTIN BENDESKY, SEHEE JEONG, STEPHANIE S. LEE i MICHAEL BOZLAR. "EFFECTS OF GRAPHENE ON TWISTING OF HIGH DENSITY POLYETHYLENE". W Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36468.
Pełny tekst źródłaShe, Juncong, Yuan Huang, Wenjie Yang, Weiliang Wang, Zhibing Li, Shaozhi Deng i Ningsheng Xu. "Reduced graphene oxide cold cathodes: Preparation, actively-controlled field emission properties and the related physical mechanism". W 2012 IEEE Thirteenth International Vacuum Electronics Conference (IVEC). IEEE, 2012. http://dx.doi.org/10.1109/ivec.2012.6262104.
Pełny tekst źródłaRaporty organizacyjne na temat "Graphene - Physical Properties"
Eklund, P. C. Microscopic physical and chemical properties of graphite intercalation compounds. Office of Scientific and Technical Information (OSTI), sierpień 1992. http://dx.doi.org/10.2172/6977572.
Pełny tekst źródłaCarroll, Mark C. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades. Office of Scientific and Technical Information (OSTI), wrzesień 2014. http://dx.doi.org/10.2172/1168626.
Pełny tekst źródłaStrizak, Joe P., Timothy D. Burchell i Will Windes. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications. Office of Scientific and Technical Information (OSTI), grudzień 2011. http://dx.doi.org/10.2172/1030608.
Pełny tekst źródłaEklund, P. C. Microscopic physical and chemical properties of graphite intercalation compounds. Final report, August 1, 1984--July 31, 1985. Office of Scientific and Technical Information (OSTI), sierpień 1992. http://dx.doi.org/10.2172/10182617.
Pełny tekst źródłaBabkin, Vladyslav V., Viktor V. Sharavara, Volodymyr V. Sharavara, Vladyslav V. Bilous, Andrei V. Voznyak i Serhiy Ya Kharchenko. Using augmented reality in university education for future IT specialists: educational process and student research work. CEUR Workshop Proceedings, lipiec 2021. http://dx.doi.org/10.31812/123456789/4632.
Pełny tekst źródła