Artykuły w czasopismach na temat „Graphene - Photovoltaics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene - Photovoltaics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bin, Zihang. "A comparison between the mainstream heterojunction PV studies". Applied and Computational Engineering 7, nr 1 (21.07.2023): 29–34. http://dx.doi.org/10.54254/2755-2721/7/20230327.
Pełny tekst źródłaZibouche, Nourdine, George Volonakis i Feliciano Giustino. "Graphene Oxide/Perovskite Interfaces For Photovoltaics". Journal of Physical Chemistry C 122, nr 29 (lipiec 2018): 16715–26. http://dx.doi.org/10.1021/acs.jpcc.8b03230.
Pełny tekst źródłaKeyvani-Someh, Ehsan, Zachariah Hennighausen, William Lee, Rachna C. K. Igwe, Mohamed Elamine Kramdi, Swastik Kar i Hicham Fenniri. "Organic Photovoltaics with Stacked Graphene Anodes". ACS Applied Energy Materials 1, nr 1 (12.12.2017): 17–21. http://dx.doi.org/10.1021/acsaem.7b00020.
Pełny tekst źródłaLiu, Thomas, Claire Tonnelé, Shen Zhao, Loïc Rondin, Christine Elias, Daniel Medina-Lopez, Hanako Okuno i in. "Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots". Nanoscale 14, nr 10 (2022): 3826–33. http://dx.doi.org/10.1039/d1nr08279e.
Pełny tekst źródłaLarsen, Lachlan J., Cameron J. Shearer, Amanda V. Ellis i Joseph G. Shapter. "Solution processed graphene–silicon Schottky junction solar cells". RSC Advances 5, nr 49 (2015): 38851–58. http://dx.doi.org/10.1039/c5ra03965g.
Pełny tekst źródłaPetridis, Constantinos, Dimitrios Konios, Minas M. Stylianakis, George Kakavelakis, Maria Sygletou, Kyriaki Savva, Pavlos Tzourmpakis i in. "Solution processed reduced graphene oxide electrodes for organic photovoltaics". Nanoscale Horizons 1, nr 5 (2016): 375–82. http://dx.doi.org/10.1039/c5nh00089k.
Pełny tekst źródłaYeh, Te-Fu, Chiao-Yi Teng, Liang-Che Chen, Shean-Jen Chen i Hsisheng Teng. "Graphene oxide-based nanomaterials for efficient photoenergy conversion". Journal of Materials Chemistry A 4, nr 6 (2016): 2014–48. http://dx.doi.org/10.1039/c5ta07780j.
Pełny tekst źródłaIbrayev, N., E. Seliverstova i A. Zhumabekov. "Preparation of graphene nanostructured films for photovoltaics". IOP Conference Series: Materials Science and Engineering 447 (21.11.2018): 012068. http://dx.doi.org/10.1088/1757-899x/447/1/012068.
Pełny tekst źródłaCox, Marshall, Alon Gorodetsky, Bumjung Kim, Keun Soo Kim, Zhang Jia, Philip Kim, Colin Nuckolls i Ioannis Kymissis. "Single-layer graphene cathodes for organic photovoltaics". Applied Physics Letters 98, nr 12 (21.03.2011): 123303. http://dx.doi.org/10.1063/1.3569601.
Pełny tekst źródłaYong, Virginia, i James M. Tour. "Theoretical Efficiency of Nanostructured Graphene-Based Photovoltaics". Small 6, nr 2 (18.01.2010): 313–18. http://dx.doi.org/10.1002/smll.200901364.
Pełny tekst źródłaKonios, Dimitrios, George Kakavelakis, Costantinos Petridis, Kyriaki Savva, Emmanuel Stratakis i Emmanuel Kymakis. "Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers". Journal of Materials Chemistry A 4, nr 5 (2016): 1612–23. http://dx.doi.org/10.1039/c5ta09712f.
Pełny tekst źródłaStylianakis, M. M., D. Konios, G. Kakavelakis, G. Charalambidis, E. Stratakis, A. G. Coutsolelos, E. Kymakis i S. H. Anastasiadis. "Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material". Nanoscale 7, nr 42 (2015): 17827–35. http://dx.doi.org/10.1039/c5nr05113d.
Pełny tekst źródłaWang, Jun, Xukai Xin i Zhiqun Lin. "Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics". Nanoscale 3, nr 8 (2011): 3040. http://dx.doi.org/10.1039/c1nr10425j.
Pełny tekst źródłaBehura, Sanjay K., Chen Wang, Yu Wen i Vikas Berry. "Graphene–semiconductor heterojunction sheds light on emerging photovoltaics". Nature Photonics 13, nr 5 (20.03.2019): 312–18. http://dx.doi.org/10.1038/s41566-019-0391-9.
Pełny tekst źródłaTiwari, Sourabh, Anushka Purabgola i Balasubramanian Kandasubramanian. "Functionalised graphene as flexible electrodes for polymer photovoltaics". Journal of Alloys and Compounds 825 (czerwiec 2020): 153954. http://dx.doi.org/10.1016/j.jallcom.2020.153954.
Pełny tekst źródłaJavvaji, Brahmanandam, Pattabhi Ramaiah Budarapu, Marco Paggi, Xiaoying Zhuang i Timon Rabczuk. "Fracture Properties of Graphene-Coated Silicon for Photovoltaics". Advanced Theory and Simulations 1, nr 12 (20.09.2018): 1800097. http://dx.doi.org/10.1002/adts.201800097.
Pełny tekst źródłaAli, Alaa Y., Natalie P. Holmes, Mohsen Ameri, Krishna Feron, Mahir N. Thameel, Matthew G. Barr, Adam Fahy i in. "Low-Temperature CVD-Grown Graphene Thin Films as Transparent Electrode for Organic Photovoltaics". Coatings 12, nr 5 (16.05.2022): 681. http://dx.doi.org/10.3390/coatings12050681.
Pełny tekst źródłaPastuszak, Justyna, i Paweł Węgierek. "Photovoltaic Cell Generations and Current Research Directions for Their Development". Materials 15, nr 16 (12.08.2022): 5542. http://dx.doi.org/10.3390/ma15165542.
Pełny tekst źródłaMosavi, Amirhosein, i Nima E. Gorji. "Brief review on thin films, perovskite solar cells and nanostructure’s applications". Modern Physics Letters B 34, nr 24 (20.08.2020): 2030003. http://dx.doi.org/10.1142/s0217984920300033.
Pełny tekst źródłaTian Zhenghao, 田正浩, 司长峰 Si Changfeng, 屈文山 Qu Wenshan, 郭坤平 Guo Kunping, 潘赛虎 Pan Saihu, 高志翔 Gao Zhixiang, 徐韬 Xu Tao i 魏斌 Wei Bin. "High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide". Acta Optica Sinica 37, nr 4 (2017): 0416001. http://dx.doi.org/10.3788/aos201737.0416001.
Pełny tekst źródłaMurray, Ian P., Sylvia J. Lou, Laura J. Cote, Stephen Loser, Cameron J. Kadleck, Tao Xu, Jodi M. Szarko i in. "Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics". Journal of Physical Chemistry Letters 2, nr 24 (16.11.2011): 3006–12. http://dx.doi.org/10.1021/jz201493d.
Pełny tekst źródłaLin, Yu-Che, Chung-Hao Chen, Nian-Zu She, Chien-Yao Juan, Bin Chang, Meng-Hua Li, Hao-Cheng Wang i in. "Correction: Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics". Journal of Materials Chemistry A 9, nr 42 (2021): 24071–72. http://dx.doi.org/10.1039/d1ta90215f.
Pełny tekst źródłaHo, Po-Hsun, Wei-Chen Lee, Yi-Ting Liou, Ya-Ping Chiu, Yi-Siang Shih, Chun-Chi Chen, Pao-Yun Su i in. "Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics". Energy & Environmental Science 8, nr 7 (2015): 2085–92. http://dx.doi.org/10.1039/c5ee00548e.
Pełny tekst źródłaAgarwal, Vipul, i Kaushik Chatterjee. "Recent advances in the field of transition metal dichalcogenides for biomedical applications". Nanoscale 10, nr 35 (2018): 16365–97. http://dx.doi.org/10.1039/c8nr04284e.
Pełny tekst źródłaYe, Jian, Xueliang Li, Jianjun Zhao, Xuelan Mei i Qian Li. "Efficient and stable perovskite solar cells based on functional graphene-modified P3HT hole-transporting layer". RSC Advances 6, nr 43 (2016): 36356–61. http://dx.doi.org/10.1039/c6ra03466g.
Pełny tekst źródłaDey, Argha, Bhaskar Chandra Das, Asit Baran Biswas, Poulomi Biswas, Abhishek Dhar, Subhasis Roy i Sk Abdul Moyez. "Graphene Co-Doped TiO2 Nanocomposites for Photocatalysis and Photovoltaics Applications". Indian Journal of Science and Technology 10, nr 31 (16.09.2017): 1–6. http://dx.doi.org/10.17485/ijst/2017/v10i31/113878.
Pełny tekst źródłaShin, Kyung-Sik, Hanggochnuri Jo, Hyeon-Jin Shin, Won Mook Choi, Jae-Young Choi i Sang-Woo Kim. "High quality graphene-semiconducting oxide heterostructure for inverted organic photovoltaics". Journal of Materials Chemistry 22, nr 26 (2012): 13032. http://dx.doi.org/10.1039/c2jm00072e.
Pełny tekst źródłaPark, H., S. Chang, X. Zhou, J. Kong, T. Palacios i S. Gradecak. "Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency". ECS Transactions 69, nr 14 (2.10.2015): 77–82. http://dx.doi.org/10.1149/06914.0077ecst.
Pełny tekst źródłaPark, Hyesung, Sehoon Chang, Xiang Zhou, Jing Kong, Tomás Palacios i Silvija Gradečak. "Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency". Nano Letters 14, nr 9 (28.08.2014): 5148–54. http://dx.doi.org/10.1021/nl501981f.
Pełny tekst źródłaStratakis, Emmanuel, Kyriaki Savva, Dimitrios Konios, Constantinos Petridis i Emmanuel Kymakis. "Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers". Nanoscale 6, nr 12 (2014): 6925–31. http://dx.doi.org/10.1039/c4nr01539h.
Pełny tekst źródłaMaurya, Sandeep Kumar, Hazel Rose Galvan, Gaurav Gautam i Xiaojie Xu. "Recent Progress in Transparent Conductive Materials for Photovoltaics". Energies 15, nr 22 (19.11.2022): 8698. http://dx.doi.org/10.3390/en15228698.
Pełny tekst źródłaNotarianni, Marco, Jinzhang Liu, Kristy Vernon i Nunzio Motta. "Synthesis and applications of carbon nanomaterials for energy generation and storage". Beilstein Journal of Nanotechnology 7 (1.02.2016): 149–96. http://dx.doi.org/10.3762/bjnano.7.17.
Pełny tekst źródłaLitvin, Aleksandr P., Anton A. Babaev, Peter S. Parfenov, Aliaksei Dubavik, Sergei A. Cherevkov, Mikhail A. Baranov, Kirill V. Bogdanov i in. "Ligand-Assisted Formation of Graphene/Quantum Dot Monolayers with Improved Morphological and Electrical Properties". Nanomaterials 10, nr 4 (11.04.2020): 723. http://dx.doi.org/10.3390/nano10040723.
Pełny tekst źródłaBointon, Thomas H., Saverio Russo i Monica Felicia Craciun. "Is graphene a good transparent electrode for photovoltaics and display applications?" IET Circuits, Devices & Systems 9, nr 6 (listopad 2015): 403–12. http://dx.doi.org/10.1049/iet-cds.2015.0121.
Pełny tekst źródłaYan, Xin, Xiao Cui, Binsong Li i Liang-shi Li. "Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics". Nano Letters 10, nr 5 (12.05.2010): 1869–73. http://dx.doi.org/10.1021/nl101060h.
Pełny tekst źródłaKim, Jae-Yup, Jang Yeol Lee, Keun-Young Shin, Hansol Jeong, Hae Jung Son, Chul-Ho Lee, Jong Hyuk Park, Sang-Soo Lee, Jeong Gon Son i Min Jae Ko. "Highly crumpled graphene nano-networks as electrocatalytic counter electrode in photovoltaics". Applied Catalysis B: Environmental 192 (wrzesień 2016): 342–49. http://dx.doi.org/10.1016/j.apcatb.2016.04.008.
Pełny tekst źródłaTavakoli, Mohammad Mahdi, Michel Nasilowski, Jiayuan Zhao, Moungi G. Bawendi i Jing Kong. "Efficient Semitransparent CsPbI 3 Quantum Dots Photovoltaics Using a Graphene Electrode". Small Methods 3, nr 12 (13.08.2019): 1900449. http://dx.doi.org/10.1002/smtd.201900449.
Pełny tekst źródłaDas, Sonali, Deepak Pandey, Jayan Thomas i Tania Roy. "The Role of Graphene and Other 2D Materials in Solar Photovoltaics". Advanced Materials 31, nr 1 (6.09.2018): 1802722. http://dx.doi.org/10.1002/adma.201802722.
Pełny tekst źródłaKalita, Golap, i Masayoshi Umeno. "Synthesis of Graphene and Related Materials by Microwave-Excited Surface Wave Plasma CVD Methods". AppliedChem 2, nr 3 (30.08.2022): 160–84. http://dx.doi.org/10.3390/appliedchem2030012.
Pełny tekst źródłaSygletou, M., P. Tzourmpakis, C. Petridis, D. Konios, C. Fotakis, E. Kymakis i E. Stratakis. "Laser induced nucleation of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics". Journal of Materials Chemistry A 4, nr 3 (2016): 1020–27. http://dx.doi.org/10.1039/c5ta09199c.
Pełny tekst źródłaSeliverstova, E. V., N. Kh Ibrayev, D. A. Temirbayeva i G. S. Omarova. "Optical properties of ablated graphene oxide in aqueous dispersions". Bulletin of the Karaganda University. "Physics" Series 99, nr 3 (30.09.2020): 6–12. http://dx.doi.org/10.31489/2020ph3/6-12.
Pełny tekst źródłaKonios, Dimitrios, Constantinos Petridis, George Kakavelakis, Maria Sygletou, Kyriaki Savva, Emmanuel Stratakis i Emmanuel Kymakis. "Photovoltaics: Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices (Adv. Funct. Mater. 15/2015)". Advanced Functional Materials 25, nr 15 (kwiecień 2015): 2206. http://dx.doi.org/10.1002/adfm.201570101.
Pełny tekst źródłaHaque, Farjana, Md Moshiur Rahman, Md Abdullah Al Mahmud, M. Subbir Reza, Munmun Akter i A. H. M. Zadidul Karim. "Chemically Converted Graphene as a Hole Transport Layer (HTL) Inorganic Photovoltaics (OPVS)". Engineering International 6, nr 1 (10.05.2018): 7. http://dx.doi.org/10.18034/ei.v6i1.1085.
Pełny tekst źródłaHaque, Farjana, Md Moshiur Rahman, Md Abdullah Al Mahmud, M. Subbir Reza, Munmun Akter i A. H. M. Zadidul Karim. "Chemically Converted Graphene as a Hole Transport Layer (HTL) Inorganic Photovoltaics (OPVS)". Engineering International 6, nr 1 (2018): 7–20. http://dx.doi.org/10.18034/ei.v6i1.170.
Pełny tekst źródłaGiangregorio, M. M., M. Losurdo, G. V. Bianco, E. Dilonardo, P. Capezzuto i G. Bruno. "Synthesis and characterization of plasmon resonant gold nanoparticles and graphene for photovoltaics". Materials Science and Engineering: B 178, nr 9 (maj 2013): 559–67. http://dx.doi.org/10.1016/j.mseb.2012.10.034.
Pełny tekst źródłaPaul, Rajrupa, Nicolas Humblot, Simon Escobar Steinvall, Elias Zsolt Stutz, Shreyas Sanjay Joglekar, Jean-Baptiste Leran, Mahdi Zamani i in. "van der Waals Epitaxy of Earth-Abundant Zn3P2 on Graphene for Photovoltaics". Crystal Growth & Design 20, nr 6 (9.04.2020): 3816–25. http://dx.doi.org/10.1021/acs.cgd.0c00125.
Pełny tekst źródłaMohd Yusoff, Abd Rashid bin, Hyeong Pil Kim i Jin Jang. "High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers". Nanoscale 6, nr 3 (2014): 1537–44. http://dx.doi.org/10.1039/c3nr04709a.
Pełny tekst źródłaHu, Long, Deng-Bing Li, Liang Gao, Hua Tan, Chao Chen, Kanghua Li, Min Li i in. "Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics". Advanced Functional Materials 26, nr 12 (5.02.2016): 1899–907. http://dx.doi.org/10.1002/adfm.201505043.
Pełny tekst źródłaPetridis, Costantinos, George Kakavelakis i Emmanuel Kymakis. "Renaissance of graphene-related materials in photovoltaics due to the emergence of metal halide perovskite solar cells". Energy & Environmental Science 11, nr 5 (2018): 1030–61. http://dx.doi.org/10.1039/c7ee03620e.
Pełny tekst źródłaSifuentes-Gallardo, C., I. A. Sustaita-Torres, I. Rodríguez-Vargas, J. R. Suárez-López i J. Madrigal-Melchor. "Transmittance and Absorption Properties of Graphene Multilayer Quasi-periodic Structure: Period-Doubling case". MRS Advances 2, nr 49 (2017): 2781–86. http://dx.doi.org/10.1557/adv.2017.545.
Pełny tekst źródła