Artykuły w czasopismach na temat „Graphene - Photocatalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene - Photocatalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Prakash, Jai. "Mechanistic Insights into Graphene Oxide Driven Photocatalysis as Co-Catalyst and Sole Catalyst in Degradation of Organic Dye Pollutants". Photochem 2, nr 3 (17.08.2022): 651–71. http://dx.doi.org/10.3390/photochem2030043.
Pełny tekst źródłaChen, De Qiang, Yang Li i Yi Qun Chen. "Preparation of Graphene and γ-Fe2O3 Doped Titanium Dioxide and its Photocatalytic Properties". Applied Mechanics and Materials 295-298 (luty 2013): 447–51. http://dx.doi.org/10.4028/www.scientific.net/amm.295-298.447.
Pełny tekst źródłaNasir, Amara, Sadia Khalid, Tariq Yasin i Anca Mazare. "A Review on the Progress and Future of TiO2/Graphene Photocatalysts". Energies 15, nr 17 (27.08.2022): 6248. http://dx.doi.org/10.3390/en15176248.
Pełny tekst źródłaSánchez, Luis A., Brian E. Huayta, Pierre G. Ramos i Juan M. Rodriguez. "Enhanced Photocatalytic Activity of ZnO Nanorods/(Graphene Oxide, Reduced Graphene Oxide) for Degradation of Methyl Orange Dye". Journal of Physics: Conference Series 2172, nr 1 (1.02.2022): 012013. http://dx.doi.org/10.1088/1742-6596/2172/1/012013.
Pełny tekst źródłaAlbero, Josep, Diego Mateo i Hermenegildo García. "Graphene-Based Materials as Efficient Photocatalysts for Water Splitting". Molecules 24, nr 5 (5.03.2019): 906. http://dx.doi.org/10.3390/molecules24050906.
Pełny tekst źródłaHong, Xiaodong, Xu Wang, Yang Li, Jiawei Fu i Bing Liang. "Progress in Graphene/Metal Oxide Composite Photocatalysts for Degradation of Organic Pollutants". Catalysts 10, nr 8 (11.08.2020): 921. http://dx.doi.org/10.3390/catal10080921.
Pełny tekst źródłaJohar, Muhammad Ali, Rana Arslan Afzal, Abdulrahman Ali Alazba i Umair Manzoor. "Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites". Advances in Materials Science and Engineering 2015 (2015): 1–22. http://dx.doi.org/10.1155/2015/934587.
Pełny tekst źródłaCai, Tingwei, Ying Ding i Lihui Xu. "Synthesis of flower-like CuS/graphene aerogels for dye wastewater treatment". Functional Materials Letters 12, nr 02 (kwiecień 2019): 1950002. http://dx.doi.org/10.1142/s1793604719500024.
Pełny tekst źródłaYang, Zanhe, Siqi Zhou, Xiangyu Feng, Nannan Wang, Oluwafunmilola Ola i Yanqiu Zhu. "Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application". Nanomaterials 13, nr 13 (7.07.2023): 2028. http://dx.doi.org/10.3390/nano13132028.
Pełny tekst źródłaChen, Yanling, i Xue Bai. "A Review on Quantum Dots Modified g-C3N4-Based Photocatalysts with Improved Photocatalytic Activity". Catalysts 10, nr 1 (20.01.2020): 142. http://dx.doi.org/10.3390/catal10010142.
Pełny tekst źródłaEl-Sayed, Fatma, Mai S. A. Hussien, Thekrayat H. AlAbdulaal, Ahmed Ismail, Heba Y. Zahran, Ibrahim S. Yahia, Mohamed Sh Abdel-wahab, Yasmin Khairy, Tarik E. Ali i Medhat A. Ibrahim. "Comparative Degradation Studies of Carmine Dye by Photocatalysis and Photoelectrochemical Oxidation Processes in the Presence of Graphene/N-Doped ZnO Nanostructures". Crystals 12, nr 4 (11.04.2022): 535. http://dx.doi.org/10.3390/cryst12040535.
Pełny tekst źródłaXu, Zhi Ying, Xin Gang Wang, Yang Bo Liu, Wei Sheng Ma i Ze Qin Mo. "Study on Preparation and Decontamination Properties of Hybrid-Photocatalysis Based on Graphene and TiO2". Advanced Materials Research 1092-1093 (marzec 2015): 988–91. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.988.
Pełny tekst źródłaSayury Miyashiro, Carolina, i Safia Hamoudi. "Palladium and Graphene Oxide Doped ZnO for Aqueous Acetamiprid Degradation under Visible Light". Catalysts 12, nr 7 (28.06.2022): 709. http://dx.doi.org/10.3390/catal12070709.
Pełny tekst źródłaLee, Jun-Cheol, Anantha-Iyengar Gopalan, Gopalan Sai-Anand, Kwang-Pill Lee i Wha-Jung Kim. "Preparation of Visible Light Photocatalytic Graphene Embedded Rutile Titanium(IV) Oxide Composite Nanowires and Enhanced NOx Removal". Catalysts 9, nr 2 (11.02.2019): 170. http://dx.doi.org/10.3390/catal9020170.
Pełny tekst źródłaVasilaki, Evangelia, Nikos Katsarakis, Spyros Dokianakis i Maria Vamvakaki. "rGO Functionalized ZnO–TiO2 Core-Shell Flower-Like Architectures for Visible Light Photocatalysis". Catalysts 11, nr 3 (5.03.2021): 332. http://dx.doi.org/10.3390/catal11030332.
Pełny tekst źródłaAguilera Mandujano, A., i J. Serrato Rodriguez. "Synthesis and characterization of titania/graphene nanocomposite for application in photocatalysis". Revista Mexicana de Física 66, nr 5 Sept-Oct (1.09.2020): 610. http://dx.doi.org/10.31349/revmexfis.66.610.
Pełny tekst źródłaSanchez Tobon, Camilo, Ivana Panžić, Arijeta Bafti, Gordana Matijašić, Davor Ljubas i Lidija Ćurković. "Rapid Microwave-Assisted Synthesis of N/TiO2/rGO Nanoparticles for the Photocatalytic Degradation of Pharmaceuticals". Nanomaterials 12, nr 22 (11.11.2022): 3975. http://dx.doi.org/10.3390/nano12223975.
Pełny tekst źródłaKumar, Suneel, Ashish Kumar, Ashish Bahuguna, Vipul Sharma i Venkata Krishnan. "Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications". Beilstein Journal of Nanotechnology 8 (3.08.2017): 1571–600. http://dx.doi.org/10.3762/bjnano.8.159.
Pełny tekst źródłaUsman, Muhammad, Muhammad Humayun, Syed Shaheen Shah, Habib Ullah, Asif A. Tahir, Abbas Khan i Habib Ullah. "Bismuth-Graphene Nanohybrids: Synthesis, Reaction Mechanisms, and Photocatalytic Applications—A Review". Energies 14, nr 8 (19.04.2021): 2281. http://dx.doi.org/10.3390/en14082281.
Pełny tekst źródłaLi, Jiquan, Youyan Wang, Huan Ling, Ye Qiu, Jia Lou, Xu Hou, Sankar Parsad Bag, Jie Wang, Huaping Wu i Guozhong Chai. "Significant Enhancement of the Visible Light Photocatalytic Properties in 3D BiFeO3/Graphene Composites". Nanomaterials 9, nr 1 (5.01.2019): 65. http://dx.doi.org/10.3390/nano9010065.
Pełny tekst źródłaGardner, Henry. "Preparation of Graphene/WO3 Nanocomposite and Its Application in Photocatalytic Degradation". Applied and Computational Engineering 1, nr 1 (5.05.2022): 37–42. http://dx.doi.org/10.54254/ace.2022005.
Pełny tekst źródłaShabestari, Marjan E., Juan Baselga i Olga Martin. "Photocatalytic Behavior of Supported Copper Double Salt: The Role of Graphene Oxide". Journal of Chemistry 2022 (12.05.2022): 1–9. http://dx.doi.org/10.1155/2022/7844259.
Pełny tekst źródłaAltendji, Khaoula, i Safia Hamoudi. "Efficient Photocatalytic Degradation of Aqueous Atrazine over Graphene-Promoted g-C3N4 Nanosheets". Catalysts 13, nr 9 (1.09.2023): 1265. http://dx.doi.org/10.3390/catal13091265.
Pełny tekst źródłaSass, Mouele i Ross. "Nano Silver-Iron-Reduced Graphene Oxide Modified Titanium Dioxide Photocatalytic Remediation System for Organic Dye". Environments 6, nr 9 (9.09.2019): 106. http://dx.doi.org/10.3390/environments6090106.
Pełny tekst źródłaWu, Guosong, Qiuping Shen, Houlin Yu, Tingyu Zhao, Congda Lu i Aiping Liu. "Reduced graphene oxide encapsulated Cu2O with controlled crystallographic facets for enhanced visible-light photocatalytic degradation". Functional Materials Letters 10, nr 04 (sierpień 2017): 1750034. http://dx.doi.org/10.1142/s1793604717500345.
Pełny tekst źródłaDharwadkar, Sripriya, Linlong Yu i Gopal Achari. "Photocatalytic Degradation of Sulfolane Using a LED-Based Photocatalytic Treatment System". Catalysts 11, nr 5 (12.05.2021): 624. http://dx.doi.org/10.3390/catal11050624.
Pełny tekst źródłaWang, Dong Fang, Da Chen, Guang Xing Ping, Chao Wang, Hai Zhen Chen i Kang Ying Shu. "Preparation and Photocatalysis Properties of TiO2/Graphene Nanocomposites". Advanced Materials Research 430-432 (styczeń 2012): 1005–8. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1005.
Pełny tekst źródłaWang, Wan Jun, Jimmy C. Yu i Po Keung Wong. "Photocatalysts for Solar-Induced Water Disinfection: New Developments and Opportunities". Materials Science Forum 734 (grudzień 2012): 63–89. http://dx.doi.org/10.4028/www.scientific.net/msf.734.63.
Pełny tekst źródłaYadav, Anuja A., Yuvaraj M. Hunge, Seok-Won Kang, Akira Fujishima i Chiaki Terashima. "Enhanced Photocatalytic Degradation Activity Using the V2O5/RGO Composite". Nanomaterials 13, nr 2 (13.01.2023): 338. http://dx.doi.org/10.3390/nano13020338.
Pełny tekst źródłaFerreira, Maria Eliana Camargo, Lara de Souza Soletti, Eduarda Gameleira Bernardino, Heloise Beatriz Quesada, Francielli Gasparotto, Rosângela Bergamasco i Natália Ueda Yamaguchi. "Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation". Catalysts 12, nr 7 (7.07.2022): 745. http://dx.doi.org/10.3390/catal12070745.
Pełny tekst źródłaLi, Yue-Hua, Zi-Rong Tang i Yi-Jun Xu. "Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis". Chinese Journal of Catalysis 43, nr 3 (marzec 2022): 708–30. http://dx.doi.org/10.1016/s1872-2067(21)63871-8.
Pełny tekst źródłaBokare, Anuja, Sowbaranigha Chinnusamy i Folarin Erogbogbo. "TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications". Catalysts 11, nr 3 (28.02.2021): 319. http://dx.doi.org/10.3390/catal11030319.
Pełny tekst źródłaZhu, Zhen, Bo-Xun Jiang, Ren-Jang Wu, Cheng-Liang Huang i You Chang. "Photoreduction of CO2 into CH4 Using Novel Composite of Triangular Silver Nanoplates on Graphene-BiVO4". Catalysts 12, nr 7 (7.07.2022): 750. http://dx.doi.org/10.3390/catal12070750.
Pełny tekst źródłaShaalan, Nagih M., Mohamed Rashad i Chawki Awada. "Synergistic Effect of NiO-Ga2O2-Graphene Heterostructures on Congo Red Photodegradation in Water". Separations 9, nr 8 (2.08.2022): 201. http://dx.doi.org/10.3390/separations9080201.
Pełny tekst źródłaRashad, Mohamed, Saloua Helali, Nagih M. Shaalan, Aishah E. Albalawi, Naifa S. Alatawi, Bassam Al-Faqiri, Mohammed M. Al-Belwi i Abdulrhman M. Alsharari. "Dual Studies of Photo Degradation and Adsorptions of Congo Red in Wastewater on Graphene–Copper Oxide Heterostructures". Materials 16, nr 10 (14.05.2023): 3721. http://dx.doi.org/10.3390/ma16103721.
Pełny tekst źródłaPelosato, Renato, Isabella Bolognino, Francesca Fontana i Isabella Natali Sora. "Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review". Molecules 27, nr 9 (24.04.2022): 2743. http://dx.doi.org/10.3390/molecules27092743.
Pełny tekst źródłaGao, Weiyin, Minqiang Wang, Chenxin Ran i Le Li. "Facile one-pot synthesis of MoS2 quantum dots–graphene–TiO2 composites for highly enhanced photocatalytic properties". Chemical Communications 51, nr 9 (2015): 1709–12. http://dx.doi.org/10.1039/c4cc08984g.
Pełny tekst źródłaRazak, Sharin, Ong Soon Hin i Raihan Hamzah. "Photocatalytic Degradation of Methylene Blue by TiO2- Graphene Composite". Solid State Phenomena 317 (maj 2021): 257–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.317.257.
Pełny tekst źródłaYaqoob, Asim Ali, Nur Habibah binti Mohd Noor, Albert Serrà i Mohamad Nasir Mohamad Ibrahim. "Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation". Nanomaterials 10, nr 5 (12.05.2020): 932. http://dx.doi.org/10.3390/nano10050932.
Pełny tekst źródłaZhou, Chaocun, Yanming Yang, Yueshuai Zhu, Juanjuan Ma, Jinlin Long, Rusheng Yuan, Zhengxin Ding, Zhaohui Li i Chao Xu. "A graphene-hidden structure with diminished light shielding effect: more efficient graphene-involved composite photocatalysts". Catalysis Science & Technology 8, nr 18 (2018): 4734–40. http://dx.doi.org/10.1039/c8cy00954f.
Pełny tekst źródłaLi, Xin, Jiaguo Yu, S. Wageh, Ahmed A. Al-Ghamdi i Jun Xie. "Graphene in Photocatalysis: A Review". Small 12, nr 48 (2.11.2016): 6640–96. http://dx.doi.org/10.1002/smll.201600382.
Pełny tekst źródłaMandal, Soumen, Srinivas Mallapur, Madhusudana Reddy, Jitendra Kumar Singh, Dong-Eun Lee i Taejoon Park. "An Overview on Graphene-Metal Oxide Semiconductor Nanocomposite: A Promising Platform for Visible Light Photocatalytic Activity for the Treatment of Various Pollutants in Aqueous Medium". Molecules 25, nr 22 (17.11.2020): 5380. http://dx.doi.org/10.3390/molecules25225380.
Pełny tekst źródłaKuo, Cheng-Chi, i Chun-Hu Chen. "Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering". Nanoscale 6, nr 21 (2014): 12805–13. http://dx.doi.org/10.1039/c4nr03877k.
Pełny tekst źródłaLi, Ting, Tian Tian, Fangyuan Chen, Xiang Liu i Xiaohua Zhao. "Pd Nanoparticles Incorporated Within a Zr-Based Metal–Organic Framework/Reduced Graphene Oxide Multifunctional Composite for Efficient Visible-Light-Promoted Benzyl Alcohol Oxidation". Australian Journal of Chemistry 72, nr 5 (2019): 334. http://dx.doi.org/10.1071/ch18387.
Pełny tekst źródłaAl Marzouqi, Faisal, i Rengaraj Selvaraj. "Surface Plasmon Resonance Induced Photocatalysis in 2D/2D Graphene/g-C3N4 Heterostructure for Enhanced Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination". Catalysts 13, nr 3 (10.03.2023): 560. http://dx.doi.org/10.3390/catal13030560.
Pełny tekst źródłaAlbiter, Elim, Aura S. Merlano, Elizabeth Rojas, José M. Barrera-Andrade, Ángel Salazar i Miguel A. Valenzuela. "Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review". Journal of Composites Science 5, nr 1 (25.12.2020): 4. http://dx.doi.org/10.3390/jcs5010004.
Pełny tekst źródłaDing, Zhe, Jianjun Liang, Wentao Zhang, Wei Wang, Rongyue Geng, Yun Wang, Ping Li i Qiaohui Fan. "Efficiency and active sites of the synergetic sorption and photocatalysis in Cr(vi) decontamination on a 3D oxidized graphene ribbon framework". Journal of Materials Chemistry A 8, nr 22 (2020): 11362–69. http://dx.doi.org/10.1039/d0ta01847c.
Pełny tekst źródłaKumar, Sanjay, Himanshi, Jyoti Prakash, Ankit Verma, Suman, Rohit Jasrotia, Abhishek Kandwal i in. "A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites". Catalysts 13, nr 1 (4.01.2023): 111. http://dx.doi.org/10.3390/catal13010111.
Pełny tekst źródłaMemisoglu, Gorkem, Raghavan Chinnambedu Murugesan, Joseba Zubia i Aleksey G. Rozhin. "Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications". Membranes 13, nr 2 (22.01.2023): 145. http://dx.doi.org/10.3390/membranes13020145.
Pełny tekst źródłaKong, Kelvert, Ying Weng, Weng Hoong Lam i Sin Yuan Lai. "Environmental Footprint Assessment of Methylene Blue Photodegradation using Graphene-based Titanium Dioxide". Bulletin of Chemical Reaction Engineering & Catalysis 18, nr 1 (8.03.2023): 103–17. http://dx.doi.org/10.9767/bcrec.17450.
Pełny tekst źródła