Artykuły w czasopismach na temat „Graphene p-n junction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene p-n junction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fan, Yan, Tao Wang, Yinwei Qiu, Yinli Yang, Qiubo Pan, Jun Zheng, Songwei Zeng, Wei Liu, Gang Lou i Liang Chen. "Pure Graphene Oxide Vertical p–n Junction with Remarkable Rectification Effect". Molecules 26, nr 22 (13.11.2021): 6849. http://dx.doi.org/10.3390/molecules26226849.
Pełny tekst źródłaIndykiewicz, K., C. Bray, C. Consejo, F. Teppe, S. Danilov, S. D. Ganichev i A. Yurgens. "Current-induced enhancement of photo-response in graphene THz radiation detectors". AIP Advances 12, nr 11 (1.11.2022): 115009. http://dx.doi.org/10.1063/5.0117818.
Pełny tekst źródłaLow, Tony, Seokmin Hong, Joerg Appenzeller, Supriyo Datta i Mark S. Lundstrom. "Conductance Asymmetry of Graphene p-n Junction". IEEE Transactions on Electron Devices 56, nr 6 (czerwiec 2009): 1292–99. http://dx.doi.org/10.1109/ted.2009.2017646.
Pełny tekst źródłaLiang, Jierui, Ke Xu, Swati Arora, Jennifer E. Laaser i Susan K. Fullerton-Shirey. "Ion-Locking in Solid Polymer Electrolytes for Reconfigurable Gateless Lateral Graphene p-n Junctions". Materials 13, nr 5 (1.03.2020): 1089. http://dx.doi.org/10.3390/ma13051089.
Pełny tekst źródłaJung, Min Wook, Woo Seok Song, Sung Myung, Jong Sun Lim, Sun Sook Lee i Ki Seok An. "Formation of Graphene P-N Junction Arrays Using Soft-Lithographic Patterning and Cross-Stacking". Advanced Materials Research 1098 (kwiecień 2015): 63–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1098.63.
Pełny tekst źródłaZhang, Shu-Hui, Jia-Ji Zhu, Wen Yang i Kai Chang. "Focusing RKKY interaction by graphene P–N junction". 2D Materials 4, nr 3 (27.06.2017): 035005. http://dx.doi.org/10.1088/2053-1583/aa76d2.
Pełny tekst źródłaLv, Shu-Hui, Shu-Bo Feng i Yu-Xian Li. "Thermopower and conductance for a graphene p–n junction". Journal of Physics: Condensed Matter 24, nr 14 (13.03.2012): 145801. http://dx.doi.org/10.1088/0953-8984/24/14/145801.
Pełny tekst źródłaYu, Tianhua, Changdong Kim, Chen-Wei Liang i Bin Yu. "Formation of Graphene p-n Junction via Complementary Doping". IEEE Electron Device Letters 32, nr 8 (sierpień 2011): 1050–52. http://dx.doi.org/10.1109/led.2011.2158382.
Pełny tekst źródłaPeters, Eva C., Eduardo J. H. Lee, Marko Burghard i Klaus Kern. "Gate dependent photocurrents at a graphene p-n junction". Applied Physics Letters 97, nr 19 (8.11.2010): 193102. http://dx.doi.org/10.1063/1.3505926.
Pełny tekst źródłaLi, Hao, Shubin Su, Chenhui Liang, Ting Zhang, Xuhong An, Meizhen Huang, Haihua Tao i in. "UV Rewritable Hybrid Graphene/Phosphor p–n Junction Photodiode". ACS Applied Materials & Interfaces 11, nr 46 (28.10.2019): 43351–58. http://dx.doi.org/10.1021/acsami.9b14461.
Pełny tekst źródłaKim, Jun Beom, Jinshu Li, Yongsuk Choi, Dongmok Whang, Euyheon Hwang i Jeong Ho Cho. "Photosensitive Graphene P–N Junction Transistors and Ternary Inverters". ACS Applied Materials & Interfaces 10, nr 15 (19.03.2018): 12897–903. http://dx.doi.org/10.1021/acsami.8b00483.
Pełny tekst źródłaLemme, Max C., Frank H. L. Koppens, Abram L. Falk, Mark S. Rudner, Hongkun Park, Leonid S. Levitov i Charles M. Marcus. "Gate-Activated Photoresponse in a Graphene p–n Junction". Nano Letters 11, nr 10 (12.10.2011): 4134–37. http://dx.doi.org/10.1021/nl2019068.
Pełny tekst źródłaHammam, Ahmed M. M., Marek E. Schmidt, Manoharan Muruganathan i Hiroshi Mizuta. "Sharp switching behaviour in graphene nanoribbon p-n junction". Carbon 121 (wrzesień 2017): 399–407. http://dx.doi.org/10.1016/j.carbon.2017.05.097.
Pełny tekst źródłaLi, Xiao, Lili Fan, Zhen Li, Kunlin Wang, Minlin Zhong, Jinquan Wei, Dehai Wu i Hongwei Zhu. "Boron Doping of Graphene for Graphene-Silicon p-n Junction Solar Cells". Advanced Energy Materials 2, nr 4 (17.02.2012): 425–29. http://dx.doi.org/10.1002/aenm.201100671.
Pełny tekst źródłaZhou, Xingfei, Ziying Wu, Yuchen Bai, Qicheng Wang, Zhentao Zhu, Wei Yan i Yafang Xu. "Light-modulated electron retroreflection and Klein tunneling in a graphene-based n–p–n junction". Chinese Physics B 31, nr 4 (1.03.2022): 047301. http://dx.doi.org/10.1088/1674-1056/ac2b94.
Pełny tekst źródłaWang, J. X., Q. Q. Huang, C. L. Wu, Z. J. Wei, N. N. Xuan, Z. Z. Sun, Y. Y. Fu i R. Huang. "Realization of controllable graphene p–n junctions through gate dielectric engineering". RSC Advances 5, nr 98 (2015): 80496–500. http://dx.doi.org/10.1039/c5ra10921c.
Pełny tekst źródłaKhurelbaatar, Zagarzusem, i Chel Jong Choi. "Graphene/Ge Schottky Junction Based IR Photodetectors". Solid State Phenomena 271 (styczeń 2018): 133–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.271.133.
Pełny tekst źródłaHo, Po-Hsun, Wei-Chen Lee, Yi-Ting Liou, Ya-Ping Chiu, Yi-Siang Shih, Chun-Chi Chen, Pao-Yun Su i in. "Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics". Energy & Environmental Science 8, nr 7 (2015): 2085–92. http://dx.doi.org/10.1039/c5ee00548e.
Pełny tekst źródłaJung, Minkyung, Peter Rickhaus, Simon Zihlmann, Alexander Eichler, Peter Makk i Christian Schönenberger. "GHz nanomechanical resonator in an ultraclean suspended graphene p–n junction". Nanoscale 11, nr 10 (2019): 4355–61. http://dx.doi.org/10.1039/c8nr09963d.
Pełny tekst źródłaSyariati, Rifky, Endi Suhendi, Fatimah A. Noor, Mikrajuddin Abdullah i Khairurrijal. "Modeling of Electron Tunneling Current in a p-n Junction Based on Strained Armchair Graphene Nanoribbon". International Journal of Applied Physics and Mathematics 4, nr 4 (2014): 259–62. http://dx.doi.org/10.7763/ijapm.2014.v4.295.
Pełny tekst źródłaPark, Chang-Soo. "Band-Gap tuned oscillatory conductance in bilayer graphene n-p-n junction". Journal of Applied Physics 116, nr 3 (21.07.2014): 033702. http://dx.doi.org/10.1063/1.4890224.
Pełny tekst źródłaHe, Xin, Ning Tang, Li Gao, Junxi Duan, Yuewei Zhang, Fangchao Lu, Fujun Xu i in. "Formation of p-n-p junction with ionic liquid gate in graphene". Applied Physics Letters 104, nr 14 (7.04.2014): 143102. http://dx.doi.org/10.1063/1.4870656.
Pełny tekst źródłaWoszczyna, M., M. Friedemann, T. Dziomba, Th Weimann i F. J. Ahlers. "Graphene p-n junction arrays as quantum-Hall resistance standards". Applied Physics Letters 99, nr 2 (11.07.2011): 022112. http://dx.doi.org/10.1063/1.3608157.
Pełny tekst źródłaYang, Mou, Xian-Jin Ran, Yan Cui i Rui-Qiang Wang. "Conductance oscillation of graphene nanoribbon with tilted p-n junction". Journal of Applied Physics 111, nr 8 (15.04.2012): 083708. http://dx.doi.org/10.1063/1.4704388.
Pełny tekst źródłaRahmani, Meisam, M. T. Ahmadi, Mohammad Javad Kiani i Razali Ismail. "Monolayer Graphene Nanoribbon p–n Junction". Journal of Nanoengineering and Nanomanufacturing 2, nr 4 (1.12.2012): 375–78. http://dx.doi.org/10.1166/jnan.2012.1097.
Pełny tekst źródłaMulyana, Yana, Mutsunori Uenuma, Naofumi Okamoto, Yasuaki Ishikawa, Ichiro Yamashita i Yukiharu Uraoka. "Creating Reversible p–n Junction on Graphene through Ferritin Adsorption". ACS Applied Materials & Interfaces 8, nr 12 (17.03.2016): 8192–200. http://dx.doi.org/10.1021/acsami.5b12226.
Pełny tekst źródłaTian, Pin, Libin Tang, Kar Seng Teng, Jinzhong Xiang i Shu Ping Lau. "Recent Advances in Graphene Homogeneous p–n Junction for Optoelectronics". Advanced Materials Technologies 4, nr 7 (12.04.2019): 1900007. http://dx.doi.org/10.1002/admt.201900007.
Pełny tekst źródłaXu, Xiaodan, Cong Wang, Yang Liu, Xiaofeng Wang, Nan Gong, Zhimao Zhu, Bin Shi i in. "A graphene P–N junction induced by single-gate control of dielectric structures". Journal of Materials Chemistry C 7, nr 29 (2019): 8796–802. http://dx.doi.org/10.1039/c9tc02474c.
Pełny tekst źródłaPhan, Duy-Thach, i Gwiy-Sang Chung. "P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111)". Journal of Physics and Chemistry of Solids 74, nr 11 (listopad 2013): 1509–14. http://dx.doi.org/10.1016/j.jpcs.2013.02.007.
Pełny tekst źródłaSaisa-ard, Chaipattana, I. Ming Tang i Rassmidara Hoonsawat. "Effects of band gap opening on an n–p–n bilayer graphene junction". Physica E: Low-dimensional Systems and Nanostructures 43, nr 5 (marzec 2011): 1061–64. http://dx.doi.org/10.1016/j.physe.2010.12.015.
Pełny tekst źródłaRajabi, Mehran, Mina Amirmazlaghani i Farshid Raissi. "Graphene-Based Bipolar Junction Transistor". ECS Journal of Solid State Science and Technology 10, nr 11 (1.11.2021): 111004. http://dx.doi.org/10.1149/2162-8777/ac3551.
Pełny tekst źródłaMurakami, N., Y. Sugiyama, Y. Ohno i M. Nagase. "Blackbody-like infrared radiation in stacked graphene P–N junction diode". Japanese Journal of Applied Physics 60, SC (22.02.2021): SCCD01. http://dx.doi.org/10.35848/1347-4065/abe208.
Pełny tekst źródłaSohn, Yeongsup, Woo Jong Shin, Sae Hee Ryu, Minjae Huh, Seyeong Cha i Keun Su Kim. "Graphene p-n junction formed on SiC(0001) by Au intercalation". Journal of the Korean Physical Society 78, nr 1 (15.12.2020): 40–44. http://dx.doi.org/10.1007/s40042-020-00010-0.
Pełny tekst źródłaLi, Yuan, Mansoor B. A. Jalil i Guanghui Zhou. "Giant magnetoresistance modulated by magnetic field in graphene p-n junction". Applied Physics Letters 105, nr 19 (10.11.2014): 193108. http://dx.doi.org/10.1063/1.4901743.
Pełny tekst źródłaNakaharai, Shu, Tomohiko Iijima, Shinichi Ogawa, Hisao Miyazaki, Songlin Li, Kazuhito Tsukagoshi, Shintaro Sato i Naoki Yokoyama. "Gate-Controlled P–I–N Junction Switching Device with Graphene Nanoribbon". Applied Physics Express 5, nr 1 (12.12.2011): 015101. http://dx.doi.org/10.1143/apex.5.015101.
Pełny tekst źródłaJung, Minkyung, Peter Rickhaus, Simon Zihlmann, Peter Makk i Christian Schönenberger. "Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p–n Junction". Nano Letters 16, nr 11 (11.10.2016): 6988–93. http://dx.doi.org/10.1021/acs.nanolett.6b03078.
Pełny tekst źródłaXu, Lei, Jin An i Chang-De Gong. "Quantized four-terminal resistances in a ferromagnetic graphene p–n junction". Journal of Physics: Condensed Matter 24, nr 22 (2.05.2012): 225301. http://dx.doi.org/10.1088/0953-8984/24/22/225301.
Pełny tekst źródłaLiu, Chieh-I., Dominick S. Scaletta, Dinesh K. Patel, Mattias Kruskopf, Antonio Levy, Heather M. Hill i Albert F. Rigosi. "Analysing quantized resistance behaviour in graphene Corbino p-n junction devices". Journal of Physics D: Applied Physics 53, nr 27 (5.05.2020): 275301. http://dx.doi.org/10.1088/1361-6463/ab83bb.
Pełny tekst źródłaZhu, Minmin, Jing Wu, Zehui Du, Siuhon Tsang i Edwin Hang Tong Teo. "Gate voltage and temperature dependent Ti-graphene junction resistance toward straightforward p-n junction formation". Journal of Applied Physics 124, nr 21 (7.12.2018): 215302. http://dx.doi.org/10.1063/1.5052589.
Pełny tekst źródłaAli, Asif, So-Young Kim, Muhammad Hussain, Syed Hassan Abbas Jaffery, Ghulam Dastgeer, Sajjad Hussain, Bach Thi Phuong Anh, Jonghwa Eom, Byoung Hun Lee i Jongwan Jung. "Deep-Ultraviolet (DUV)-Induced Doping in Single Channel Graphene for Pn-Junction". Nanomaterials 11, nr 11 (9.11.2021): 3003. http://dx.doi.org/10.3390/nano11113003.
Pełny tekst źródłaLü, Xiao-Long, i Hang Xie. "Bipolar and unipolar valley filter effects in graphene-based P/N junction". New Journal of Physics 22, nr 7 (14.07.2020): 073003. http://dx.doi.org/10.1088/1367-2630/ab950d.
Pełny tekst źródłaLiu, Jingping, Safieddin Safavi‐Naeini i Dayan Ban. "Fabrication and measurement of graphene p–n junction with two top gates". Electronics Letters 50, nr 23 (listopad 2014): 1724–26. http://dx.doi.org/10.1049/el.2014.3061.
Pełny tekst źródłaSuszalski, Dominik, Grzegorz Rut i Adam Rycerz. "Mesoscopic valley filter in graphene Corbino disk containing a p–n junction". Journal of Physics: Materials 3, nr 1 (21.11.2019): 015006. http://dx.doi.org/10.1088/2515-7639/ab5082.
Pełny tekst źródłaWilliams, J. R., L. DiCarlo i C. M. Marcus. "Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene". Science 317, nr 5838 (3.08.2007): 638–41. http://dx.doi.org/10.1126/science.1144657.
Pełny tekst źródłaChiu, Hsin-Ying, Vasili Perebeinos, Yu-Ming Lin i Phaedon Avouris. "Controllable p-n Junction Formation in Monolayer Graphene Using Electrostatic Substrate Engineering". Nano Letters 10, nr 11 (10.11.2010): 4634–39. http://dx.doi.org/10.1021/nl102756r.
Pełny tekst źródłaXu, Dikai, Xuegong Yu, Dace Gao, Cheng Li, Mengyao Zhong, Haiyan Zhu, Shuai Yuan, Zhan Lin i Deren Yang. "Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer". Journal of Materials Chemistry A 4, nr 27 (2016): 10558–65. http://dx.doi.org/10.1039/c6ta02868c.
Pełny tekst źródłaWang, Hong, Xiaoli Zheng, Haining Chen, Keyou Yan, Zonglong Zhu i Shihe Yang. "The nanoscale carbon p–n junction between carbon nanotubes and N,B-codoped holey graphene enhances the catalytic activity towards selective oxidation". Chem. Commun. 50, nr 56 (2014): 7517–20. http://dx.doi.org/10.1039/c4cc01707b.
Pełny tekst źródłaForrester, Derek Michael, i Feodor V. Kusmartsev. "Graphene levitons and anti-levitons in magnetic fields". Nanoscale 6, nr 13 (2014): 7594–603. http://dx.doi.org/10.1039/c4nr00754a.
Pełny tekst źródłaYu, Tianhua, Chen-Wei Liang, Changdong Kim i Bin Yu. "Local electrical stress-induced doping and formation of monolayer graphene P-N junction". Applied Physics Letters 98, nr 24 (13.06.2011): 243105. http://dx.doi.org/10.1063/1.3593131.
Pełny tekst źródłaMorozovska, Anna N., Eugene A. Eliseev i Maksym V. Strikha. "Ballistic conductivity of graphene channel with p-n junction at ferroelectric domain wall". Applied Physics Letters 108, nr 23 (6.06.2016): 232902. http://dx.doi.org/10.1063/1.4953226.
Pełny tekst źródła