Gotowa bibliografia na temat „Graphene p-n junction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene p-n junction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Graphene p-n junction"
Fan, Yan, Tao Wang, Yinwei Qiu, Yinli Yang, Qiubo Pan, Jun Zheng, Songwei Zeng, Wei Liu, Gang Lou i Liang Chen. "Pure Graphene Oxide Vertical p–n Junction with Remarkable Rectification Effect". Molecules 26, nr 22 (13.11.2021): 6849. http://dx.doi.org/10.3390/molecules26226849.
Pełny tekst źródłaIndykiewicz, K., C. Bray, C. Consejo, F. Teppe, S. Danilov, S. D. Ganichev i A. Yurgens. "Current-induced enhancement of photo-response in graphene THz radiation detectors". AIP Advances 12, nr 11 (1.11.2022): 115009. http://dx.doi.org/10.1063/5.0117818.
Pełny tekst źródłaLow, Tony, Seokmin Hong, Joerg Appenzeller, Supriyo Datta i Mark S. Lundstrom. "Conductance Asymmetry of Graphene p-n Junction". IEEE Transactions on Electron Devices 56, nr 6 (czerwiec 2009): 1292–99. http://dx.doi.org/10.1109/ted.2009.2017646.
Pełny tekst źródłaLiang, Jierui, Ke Xu, Swati Arora, Jennifer E. Laaser i Susan K. Fullerton-Shirey. "Ion-Locking in Solid Polymer Electrolytes for Reconfigurable Gateless Lateral Graphene p-n Junctions". Materials 13, nr 5 (1.03.2020): 1089. http://dx.doi.org/10.3390/ma13051089.
Pełny tekst źródłaJung, Min Wook, Woo Seok Song, Sung Myung, Jong Sun Lim, Sun Sook Lee i Ki Seok An. "Formation of Graphene P-N Junction Arrays Using Soft-Lithographic Patterning and Cross-Stacking". Advanced Materials Research 1098 (kwiecień 2015): 63–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1098.63.
Pełny tekst źródłaZhang, Shu-Hui, Jia-Ji Zhu, Wen Yang i Kai Chang. "Focusing RKKY interaction by graphene P–N junction". 2D Materials 4, nr 3 (27.06.2017): 035005. http://dx.doi.org/10.1088/2053-1583/aa76d2.
Pełny tekst źródłaLv, Shu-Hui, Shu-Bo Feng i Yu-Xian Li. "Thermopower and conductance for a graphene p–n junction". Journal of Physics: Condensed Matter 24, nr 14 (13.03.2012): 145801. http://dx.doi.org/10.1088/0953-8984/24/14/145801.
Pełny tekst źródłaYu, Tianhua, Changdong Kim, Chen-Wei Liang i Bin Yu. "Formation of Graphene p-n Junction via Complementary Doping". IEEE Electron Device Letters 32, nr 8 (sierpień 2011): 1050–52. http://dx.doi.org/10.1109/led.2011.2158382.
Pełny tekst źródłaPeters, Eva C., Eduardo J. H. Lee, Marko Burghard i Klaus Kern. "Gate dependent photocurrents at a graphene p-n junction". Applied Physics Letters 97, nr 19 (8.11.2010): 193102. http://dx.doi.org/10.1063/1.3505926.
Pełny tekst źródłaLi, Hao, Shubin Su, Chenhui Liang, Ting Zhang, Xuhong An, Meizhen Huang, Haihua Tao i in. "UV Rewritable Hybrid Graphene/Phosphor p–n Junction Photodiode". ACS Applied Materials & Interfaces 11, nr 46 (28.10.2019): 43351–58. http://dx.doi.org/10.1021/acsami.9b14461.
Pełny tekst źródłaRozprawy doktorskie na temat "Graphene p-n junction"
Mayorov, Alexander. "Tunnelling and noise in GaAs and graphene nanostructures". Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/46914.
Pełny tekst źródłaSamutpraphoot, Polnop. "Anomalous Hall effect and persistent valley currents in graphene p-n junctions/". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92691.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 39-40).
Dirac particles can exhibit Hall-like transport induced by Berry's gauge field in the absence of magnetic field. We develop a detailed picture of this unusual effect for charge carriers in graphene nanostructures. The Hall effect is nonzero in each valley but is of opposite signs in different valleys, giving rise to charge-neutral valley currents. Our analysis reveals that p-n junctions in graphene support persistent valley currents that remain nonzero in the system ground state (in thermodynamic equilibrium). The valley currents can be controlled via the bias and gate voltages, enabling a variety of potentially useful valley transport phenomena.
by Polnop Samutpraphoot.
S.B.
Kumar, Chandan. "Quantum transport in Graphene Moire Superlattice and p-n junction". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5428.
Pełny tekst źródłaLee, Wei-Chen, i 李威辰. "Sunlight-activated Graphene-heterostructure Transparent Cathodes:Enabling High-performance n-graphene/p-Si Schottky Junction Photovoltaics". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/82319427303022639214.
Pełny tekst źródła國立臺灣大學
材料科學與工程學研究所
103
Graphene, which consists of a single atom-thick layer of carbon, has a lot of attracting properties such as tunable work function, high transparency and high carrier mobility etc. All these properties make graphene be a promising material to replacing widely-used ITO as transparent conducting electrode. However, compared to well-developed graphene-based anodes, fabricating a stable graphene-based cathode is more difficult because n-type dopants for graphene have limited thermal and chemical stabilities and are also sensitive to the influence of ambient environment. In the first part of this thesis, we developed a novel “sunlight-activated” graphene-heterostructure transparent electrode. Besides, TiOx was found to be an effective n-type dopant for graphene by surface charge transfer process. With only costing a small amount of ultraviolet, TiOx will photo-generates charges under illumination then are transferred toward graphene and further doped it. This photoactive TiOx/graphene heterostructure transparent electrode exhibits excellent tunable electrical properties and is appropriate to fabricate an n-graphene/p-silicon Schottky junction solar cell, even achieving a record-high power efficiency of graphene/p-silicon structure. In the second part, we aim to improve the performance of device in the first part. With more suitable anti-reflective layers, back contact electrodes, and surface passivation, we demonstrate a “trap-free” photoactive n-graphene/p-Si Schottky solar cell with higher short circuit current and open circuit voltage. This device is also an ideal candidate for future derivatives of tandem cells.
Książki na temat "Graphene p-n junction"
Williams, James Ryan. Electronic transport in graphene: P-n junctions, shot noise, and nanoribbons. 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Graphene p-n junction"
Liu, Cheng-Hua. "Observation of Quantum Hall Plateau-Plateau Transition and Scaling Behavior of the Zeroth Landau Level in Graphene p-n-p Junction". W Springer Theses, 41–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1355-4_5.
Pełny tekst źródłaMreńca-Kolasińska, Alina, i Bartłomiej Szafran. "Circular n-p Junctions in Graphene Nanoribbons". W Physics of Quantum Rings, 559–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95159-1_18.
Pełny tekst źródłaGrushevskaya, H. V., G. G. Krylov, S. P. Kruchinin i B. Vlahovic. "Graphene Quantum Dots, Graphene Non-circular n–p–n-Junctions: Quasi-relativistic Pseudo Wave and Potentials". W NATO Science for Peace and Security Series A: Chemistry and Biology, 47–58. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1304-5_4.
Pełny tekst źródłaLiu, Cheng-Hua. "Distinctive Magnetotransport of Graphene p-n-p Junctions via Resist-Free Fabrication and Controlled Diffusion of Metallic Contact". W Springer Theses, 33–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1355-4_4.
Pełny tekst źródłaPandya, Ankur, Vishal Sorathiya i Sunil Lavadiya. "Graphene-Based Nanophotonic Devices". W Recent Advances in Nanophotonics - Fundamentals and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93853.
Pełny tekst źródłaRyzhii, V., M. Ryzhii, M. S. Shur i V. Mitin. "Negative Terahertz Dynamic Conductivity in Electrically Induced Lateral p-i-n Junction in Graphene *". W Graphene-Based Terahertz Electronics and Plasmonics, 353–61. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429328398-23.
Pełny tekst źródła"Graphene Materials for Third Generation Solar Cell Technologies". W Materials for Solar Cell Technologies I, 29–61. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090-2.
Pełny tekst źródłaRyzhii, M., V. Ryzhii, T. Otsuji, V. Mitin i M. S. Shur. "Electrically-Induced n-i-p Junctions in Multiple Graphene Layer Structures *". W Graphene-Based Terahertz Electronics and Plasmonics, 41–57. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429328398-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Graphene p-n junction"
Moghaddam, Nahid Shayesteh, Mohammad Taghi Ahmadi, Meisam Rahmani, Noraliah Aziziah Amin, Hossein Shayesteh Moghaddam i Razali Ismail. "Monolayer graphene nanoribbon p-n junction". W 2011 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE, 2011. http://dx.doi.org/10.1109/rsm.2011.6088336.
Pełny tekst źródłaLiu, Jingping, Dayan Ban, Safieddin Safavi-Naeini i Huichang Zhao. "Terahertz source with graphene p-n junction". W 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327940.
Pełny tekst źródłaYamakage, A., K. I. Imura, J. Cayssol i Y. Kuramoto. "Spin-orbit effects in graphene p - n junction". W INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771832.
Pełny tekst źródłaSajjad, Redwan N., i Avik W. Ghosha. "Tunable transmission Gap in graphene p-n junction". W 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135255.
Pełny tekst źródłaGu, Tingyi, Nick Petrone, Arend van der Zande, Yilei Li, Austin Cheng, Tony F. Heinz, Philip Kim i in. "Photocurrent gain in graphene-silicon p-i-n junction". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sw4n.4.
Pełny tekst źródłaShamsir, Samira, Laila Parvin Poly i Samia Subrina. "Electrostatic analysis of graphene nanoribbon p-n junction diode". W 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2015. http://dx.doi.org/10.1109/wiecon-ece.2015.7444014.
Pełny tekst źródłaGu, Tingyi, Dun Mao, Tiantian Li i Thomas Kananen. "High Detectivity in CMOS Substrate Powered Graphene p-i-n Junction". W 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID). IEEE, 2019. http://dx.doi.org/10.1109/rapid.2019.8864431.
Pełny tekst źródłaJung, Minkyung, Peter Rickhaus, Simon Zihlmann, Alexander Eichler, Peter Makk i Christian Schonenberger. "High-Frequency Nanomechanical Resonator in a Ballistic Graphene p-n Junction". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819098.
Pełny tekst źródłaSutar, Surajit, Everett Comfort i Ji Ung Lee. "Incidence angle-dependent transport across a single graphene p-n junction". W 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135258.
Pełny tekst źródłaPan, Chenyun, i Azad Naeemi. "Device- and system-level performance modeling for graphene P-N junction logic". W 2012 13th International Symposium on Quality Electronic Design (ISQED). IEEE, 2012. http://dx.doi.org/10.1109/isqed.2012.6187504.
Pełny tekst źródła