Artykuły w czasopismach na temat „Graphene Oxide Thin Film”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene Oxide Thin Film”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Do Thi Thuy. "SYNTHESIS THIN FILM ELECTRODES GRAPHENE VIA NOVEL 3D PRINTALBE TECHNIQUE AND DETERMINE PROPERTY ELECTROCHEMICAL". Journal of Military Science and Technology, nr 75A (11.11.2021): 29–37. http://dx.doi.org/10.54939/1859-1043.j.mst.75a.2021.29-37.
Pełny tekst źródłaAhn, Ho Sang, Hye Jin Park, Ju Hyun Oh, Jin Chul Joo i Dong Joo Kim. "VOCs Sensing Property of Graphene Oxide Thin Film by Reduction Rate". Applied Mechanics and Materials 440 (październik 2013): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amm.440.64.
Pełny tekst źródłaKim, Daeok, i Ali Coskun. "Graphene oxide-templated preferential growth of continuous MOF thin films". CrystEngComm 18, nr 22 (2016): 4013–17. http://dx.doi.org/10.1039/c5ce02188j.
Pełny tekst źródłaAlazzam, Alamoodi, Abutayeh, Stiharu i Nerguizian. "Fabrication of Porous Gold Film Using Graphene Oxide as a Sacrificial Layer". Materials 12, nr 14 (18.07.2019): 2305. http://dx.doi.org/10.3390/ma12142305.
Pełny tekst źródłaAbdul Hussein, Adi Mahmood, Sallal Abdulhadi Abdullah, Mohammed RASHEED i Rafid Sabbar Zamel. "Optical and Electrical Properties of Glass/Graphene Oxide Thin Films". Iraqi Journal of Physics (IJP) 18, nr 47 (30.11.2020): 73–83. http://dx.doi.org/10.30723/ijp.v18i47.617.
Pełny tekst źródłaJaafar, E., Muhammad Kashif, S. K. Sahari i Z. Ngaini. "Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)". Materials Science Forum 917 (marzec 2018): 112–16. http://dx.doi.org/10.4028/www.scientific.net/msf.917.112.
Pełny tekst źródłaZHU, JIAYI, i JUNHUI HE. "SELF-ASSEMBLY FABRICATION OF GRAPHENE-BASED MATERIALS WITH OPTICAL–ELECTRONIC, TRANSIENT OPTICAL AND ELECTROCHEMICAL PROPERTIES". International Journal of Nanoscience 11, nr 06 (grudzień 2012): 1240032. http://dx.doi.org/10.1142/s0219581x12400327.
Pełny tekst źródłaBolhan, Aisyah, Norasikin Ahmad Ludin, Najah Syahirah Mohd Nor, Mohd Adib Ibrahim, Suhaila Sepeai, Mohd Asri Mat Teridi, Kamaruzzaman Sopian i Azami Zaharim. "Catalytic Performance of Pt/rGO using Stacked Layer Technique for DSSC Counter Electrode". Jurnal Kejuruteraan 31, nr 1 (30.04.2019): 115–22. http://dx.doi.org/10.17576/jkukm-2019-31(1)-14.
Pełny tekst źródłaKarlsson, Anton, Helena Grennberg i Stefan Johansson. "Graphene oxide microstructure control of electrosprayed thin films". RSC Advances 13, nr 2 (2023): 781–89. http://dx.doi.org/10.1039/d2ra06278j.
Pełny tekst źródłaSafa, Saeed, Rasoul Sarraf-Mamoori i Rouhollah Azimirad. "The Effects of Reduced Graphene Oxide (rGO) on ZnO Film UV-Detector". Advanced Materials Research 829 (listopad 2013): 577–82. http://dx.doi.org/10.4028/www.scientific.net/amr.829.577.
Pełny tekst źródłaWang, Hong Jie, Li Guo Jin, Shuo Wang, Chao Wang i Tai Yang Liu. "Study on Dye-Sensitized Solar Cells Based on Graphene / Pt Counter Electrode". Advanced Materials Research 1056 (październik 2014): 25–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1056.25.
Pełny tekst źródłaHsu, Chih-Hung, Jia-Ren Wu, Lung-Chien Chen, Po-Shun Chan i Cheng-Chiang Chen. "Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer". Advances in Materials Science and Engineering 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/107352.
Pełny tekst źródłaAmpaiwong, Jutamas, Pranee Rattanawaleedirojn, Kanokwan Saengkiettiyut, Nadnudda Rodthongkum, Pranut Potiyaraj i Niphaphun Soatthiyanon. "Reduced Graphene Oxide/Carboxymethyl Cellulose Nanocomposites: Novel Conductive Films". Journal of Nanoscience and Nanotechnology 19, nr 6 (1.06.2019): 3544–50. http://dx.doi.org/10.1166/jnn.2019.16120.
Pełny tekst źródłaPereira, Neuma, Julieta Carballo, Marcos Daniel Vozer Felisberto i Glaura Silva. "A Facile Production of Reduced Graphene Oxide Transparent Films in Polyethylene Terephthalate Substrates". Journal of Nano Research 72 (21.03.2022): 53–65. http://dx.doi.org/10.4028/p-110q6p.
Pełny tekst źródłaWu, Hong Peng, Da Wei He, Yong Sheng Wang, Bing Yang Yang, Hai Teng Xu, Jing Feng Li, Hai Teng Wang, Ji Gang Wang i Ming Fu. "Preparation of Sandwich-Like TiO2/Graphene/TiO2 Films and its Application in Photocatalysis". Advanced Materials Research 465 (luty 2012): 80–85. http://dx.doi.org/10.4028/www.scientific.net/amr.465.80.
Pełny tekst źródłaYu, Hui Yao, Ying Long Yao i Xiao Hua Wang. "Humidity Sensitive Properties of Graphene Oxide Investigated by Quartz Crystal Microbalance". Advanced Materials Research 1051 (październik 2014): 85–89. http://dx.doi.org/10.4028/www.scientific.net/amr.1051.85.
Pełny tekst źródłaTismanar, Ioana, Alexandru Cosmin Obreja, Octavian Buiu i Anca Duta. "TiO2–Graphene Oxide and TiO2–Reduced Graphene Oxide Composite Thin Films for Solar Photocatalytic Wastewater Treatment". Energies 15, nr 24 (12.12.2022): 9416. http://dx.doi.org/10.3390/en15249416.
Pełny tekst źródłaKovalchuk, A. A. "Structure and oxygen-sensitive properties of thin films of natural carbon". Journal of Physics: Conference Series 2316, nr 1 (1.08.2022): 012014. http://dx.doi.org/10.1088/1742-6596/2316/1/012014.
Pełny tekst źródłaXiao-Yan, ZHANG, SUN Ming-Xuan, SUN Yu-Jun, LI Jing, SONG Peng, SUN Tong i CUI Xiao-Li. "Photoelectrochemical Properties of Graphene Oxide Thin Film Electrodes". Acta Physico-Chimica Sinica 27, nr 12 (2011): 2831–35. http://dx.doi.org/10.3866/pku.whxb20112831.
Pełny tekst źródłaValentini, Luca, i Bittolo Bon. "Plasma etching of polystyrene latex particles for the preparation of graphene oxide nanowalls". Journal of the Serbian Chemical Society 77, nr 12 (2012): 1701–7. http://dx.doi.org/10.2298/jsc121022137v.
Pełny tekst źródłaLiu, Jinzhang, Dilini Galpaya, Marco Notarianni, Cheng Yan i Nunzio Motta. "Graphene-based thin film supercapacitor with graphene oxide as dielectric spacer". Applied Physics Letters 103, nr 6 (5.08.2013): 063108. http://dx.doi.org/10.1063/1.4818337.
Pełny tekst źródłaChoi, Eunmi, i Sunggyu Pyo. "Effect of Pulsed Light Irradiation on Patterning of Reduction Graphene Oxide-Graphene Oxide Interconnects for Power Devices". Coatings 11, nr 9 (30.08.2021): 1042. http://dx.doi.org/10.3390/coatings11091042.
Pełny tekst źródłaNam, Woo Hyun, Hyung Mo Jeong, Jong-Hyeong Lim, Jong-Min Oh, Hiesang Sohn, Won-Seon Seo, Jung Young Cho i Weon Ho Shin. "Charge Transport Behavior of Al-Doped ZnO Incorporated with Reduced Graphene Oxide Nanocomposite Thin Film". Applied Sciences 10, nr 21 (30.10.2020): 7703. http://dx.doi.org/10.3390/app10217703.
Pełny tekst źródłaZhu, Jia Yi, i Jun Hui He. "Fabrication and its Transient Optical Properties of Graphene Thin Films". Materials Science Forum 743-744 (styczeń 2013): 892–902. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.892.
Pełny tekst źródłaGoswami, S., M. Chakraborty i D. De. "Electro-Magnetic switching in NiO-Graphene film". IOP Conference Series: Materials Science and Engineering 1225, nr 1 (1.02.2022): 012051. http://dx.doi.org/10.1088/1757-899x/1225/1/012051.
Pełny tekst źródłaKruk, Tomasz, i Piotr Warszyński. "Conductive Nanofilms with Oppositely Charged Reduced Graphene Oxides as a Base for Electroactive Coatings and Sensors". Colloids and Interfaces 5, nr 2 (1.04.2021): 20. http://dx.doi.org/10.3390/colloids5020020.
Pełny tekst źródłaAbunahla, Heba, Nahla Alamoodi, Anas Alazzam i Baker Mohammad. "Micro-Pattern of Graphene Oxide Films Using Metal Bonding". Micromachines 11, nr 4 (10.04.2020): 399. http://dx.doi.org/10.3390/mi11040399.
Pełny tekst źródłaKADIM, Sinai Ramah, Haider Jabbar KADIM, Adel Kadim SHAKER i Abothur Ghanim ALMOHANA. "INVESTIGATION OF STRUCTURAL, MORPHOLOGY AND SELF-CLEANING PROPERTIES OF GO:AG, GO:SI AND GO:ZN NANO-COMPOSITES THIN FILMS SYNTHESIZED BY SPRAY PYROLYSIS TECHNIQUE". MINAR International Journal of Applied Sciences and Technology 03, nr 01 (1.03.2021): 16–26. http://dx.doi.org/10.47832/2717-8234.1-3.3.
Pełny tekst źródłaLv, Ya Nan, Jian Fang Wang, Yin Long, Cheng An Tao, Lin Xia i Hui Zhu. "How Graphene Layers Depend on Drying Methods of Graphene Oxide". Advanced Materials Research 554-556 (lipiec 2012): 597–600. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.597.
Pełny tekst źródłaWu, Liang, Baishu Liu, Meiling Zhu, Dameng Guo, Han Wu, Liming Bian i Bo Zheng. "Patterning Perfluorinated Surface with Graphene Oxide and the Microarray Applications". Micromachines 10, nr 3 (1.03.2019): 173. http://dx.doi.org/10.3390/mi10030173.
Pełny tekst źródłaKammoun, M., S. Berg i H. Ardebili. "Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte". Nanoscale 7, nr 41 (2015): 17516–22. http://dx.doi.org/10.1039/c5nr04339e.
Pełny tekst źródłaCheon, Yeong Ah, Jin-Su Nam, Kyung Soo Son, Young Tae Im, Won Kee Ahn i Bong Geun Chung. "Development and Analysis of Graphene Oxide Thin Film Coating". Transactions of the Korean Society of Mechanical Engineers B 39, nr 5 (1.05.2015): 463–69. http://dx.doi.org/10.3795/ksme-b.2015.39.5.463.
Pełny tekst źródłaJilani, S. Mahaboob, Tanesh D. Gamot i P. Banerji. "Thin-Film Transistors with a Graphene Oxide Nanocomposite Channel". Langmuir 28, nr 48 (15.11.2012): 16485–89. http://dx.doi.org/10.1021/la303554z.
Pełny tekst źródłaJin, Meihua, Hae-Kyung Jeong, Woo Jong Yu, Dong Jae Bae, Bo Ram Kang i Young Hee Lee. "Graphene oxide thin film field effect transistors without reduction". Journal of Physics D: Applied Physics 42, nr 13 (18.06.2009): 135109. http://dx.doi.org/10.1088/0022-3727/42/13/135109.
Pełny tekst źródłaVaněk, Jiri, i Radoslav Mach. "Electrical Conductivity of Reduced Graphene Oxide Thin-Film Layers". ECS Transactions 87, nr 1 (26.11.2018): 253–59. http://dx.doi.org/10.1149/08701.0253ecst.
Pełny tekst źródłaHe, Qiyuan, Shixin Wu, Shuang Gao, Xiehong Cao, Zongyou Yin, Hai Li, Peng Chen i Hua Zhang. "Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors". ACS Nano 5, nr 6 (4.05.2011): 5038–44. http://dx.doi.org/10.1021/nn201118c.
Pełny tekst źródłaHeidari, B., A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan i S. Salmani. "Thin reduced graphene oxide film with enhanced optical nonlinearity". Optik 156 (marzec 2018): 104–11. http://dx.doi.org/10.1016/j.ijleo.2017.10.176.
Pełny tekst źródłaChakraborty, S., A. N. Resmi, P. Renuka Devi i K. B. Jinesh. "P-channel thin film transistors using reduced graphene oxide". Nanotechnology 28, nr 15 (15.03.2017): 155201. http://dx.doi.org/10.1088/1361-6528/aa628d.
Pełny tekst źródłaKhalid, Mohd, Milton A. Tumelero, Vinicius C. Zoldan, Cristiani C. Pla Cid, Dante F. Franceschini, Ronaldo A. Timm, Lauro T. Kubota, Stanislav A. Moshkalev i Andre A. Pasa. "Polyaniline nanofibers–graphene oxide nanoplatelets composite thin film electrodes for electrochemical capacitors". RSC Adv. 4, nr 64 (2014): 34168–78. http://dx.doi.org/10.1039/c4ra06145d.
Pełny tekst źródłaTerzioglu, Pınar, Yasin Altin, Ayse Kalemtas i Ayse Celik Bedeloglu. "Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications". Journal of Polymer Engineering 40, nr 2 (28.01.2020): 152–57. http://dx.doi.org/10.1515/polyeng-2019-0240.
Pełny tekst źródłaNaik, Gautam, i Sridhar Krishnaswamy. "Room-Temperature Humidity Sensing Using Graphene Oxide Thin Films". Graphene 05, nr 01 (2016): 1–13. http://dx.doi.org/10.4236/graphene.2016.51001.
Pełny tekst źródłaWang, Wei, Shirui Guo, Mihrimah Ozkan i Cengiz S. Ozkan. "MnO2 Decorated Three Dimensional Graphene Heterostructures for Supercapacitor Electrodes". MRS Proceedings 1451 (2012): 63–68. http://dx.doi.org/10.1557/opl.2012.1334.
Pełny tekst źródłaLAI, S., M. CHEN, YU N. KHANIN, K. S. NOVOSELOV i D. V. ANDREEVA. "ENHANCEMENT OF REDUCED GRAPHENE OXIDE BOLOMETRIC PHOTORESPONSE VIA ADDITION OF GRAPHENE QUANTUM DOTS". Surface Review and Letters 28, nr 08 (17.07.2021): 2140011. http://dx.doi.org/10.1142/s0218625x21400114.
Pełny tekst źródłaSoroush, Adel, Wen Ma, Yule Silvino i Md Saifur Rahaman. "Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets". Environmental Science: Nano 2, nr 4 (2015): 395–405. http://dx.doi.org/10.1039/c5en00086f.
Pełny tekst źródłaJiang, Youcheng, Shangzhi Song, Mengjuan Mi, Lixuan Yu, Lisha Xu, Puqing Jiang i Yilin Wang. "Improved Electrical and Thermal Conductivities of Graphene–Carbon Nanotube Composite Film as an Advanced Thermal Interface Material". Energies 16, nr 3 (30.01.2023): 1378. http://dx.doi.org/10.3390/en16031378.
Pełny tekst źródłaJung, Jae Woong, Seung Hwan Son i Jun Choi. "Polyaniline/Reduced Graphene Oxide Composites for Hole Transporting Layer of High-Performance Inverted Perovskite Solar Cells". Polymers 13, nr 8 (14.04.2021): 1281. http://dx.doi.org/10.3390/polym13081281.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaIshikawa, Ryousuke, Masashi Bando, Yasuyoshi Kurokawa, Adarsh Sandhu i Makoto Konagai. "Layer-by-layer assembled transparent conductive graphene films for solar cells application". MRS Proceedings 1451 (2012): 75–81. http://dx.doi.org/10.1557/opl.2012.1225.
Pełny tekst źródłaLEE, YOUNGBIN, i JONG-HYUN AHN. "GRAPHENE-BASED TRANSPARENT CONDUCTIVE FILMS". Nano 08, nr 03 (30.05.2013): 1330001. http://dx.doi.org/10.1142/s1793292013300016.
Pełny tekst źródłaKim, Yo-Han, Huynh Quoc Nguyen, Bum Jun Park, Hyun Ho Lee i Tae Seok Seo. "Characteristics of a Multiple-Layered Graphene Oxide Memory Thin Film Transistor with Gold Nanoparticle Embedded as Charging Elements". Journal of Nanomaterials 2021 (15.01.2021): 1–9. http://dx.doi.org/10.1155/2021/6689861.
Pełny tekst źródła