Artykuły w czasopismach na temat „Graphene Oxide - Chemical Reactivity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene Oxide - Chemical Reactivity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lee, Dongju, Kee Sun Lee, Nam Chul Kim, Changbin Song i Sung Ho Song. "Transition of magnetism in graphene coated with metal nanoparticles". Functional Materials Letters 10, nr 04 (sierpień 2017): 1750037. http://dx.doi.org/10.1142/s1793604717500370.
Pełny tekst źródłaCelasco, E. "Chemical Reactivity And Electronical Properties Of Graphene And Reduced Graphene Oxide On Different Substrates". Advanced Materials Letters 10, nr 8 (1.08.2019): 545–49. http://dx.doi.org/10.5185/amlett.2019.2204.
Pełny tekst źródłaMaya, Pai M., Sheetal R. Batakurki, Vinayak Adimule i Basappa C. Yallur. "Optical Graphene for Biosensor Application: A Review". Applied Mechanics and Materials 908 (2.08.2022): 51–68. http://dx.doi.org/10.4028/p-rs3qal.
Pełny tekst źródłaTang, Shaobin, Weihua Wu, Liangxian Liu, Zexing Cao, Xiaoxuan Wei i Zhongfang Chen. "Diels–Alder reactions of graphene oxides: greatly enhanced chemical reactivity by oxygen-containing groups". Physical Chemistry Chemical Physics 19, nr 18 (2017): 11142–51. http://dx.doi.org/10.1039/c7cp01086a.
Pełny tekst źródłaVejpravová, Jana. "Mixed sp2–sp3 Nanocarbon Materials: A Status Quo Review". Nanomaterials 11, nr 10 (22.09.2021): 2469. http://dx.doi.org/10.3390/nano11102469.
Pełny tekst źródłaRana, Surjyakanta, G. Bishwa Bidita Varadwaj i Sreekanth B. Jonnalagadda. "Green Synthesis of Cu Nanoparticles in Modulating the Reactivity of Amine-Functionalized Composite Materials towards Cross-Coupling Reactions". Nanomaterials 11, nr 9 (31.08.2021): 2260. http://dx.doi.org/10.3390/nano11092260.
Pełny tekst źródłaVacchi, Isabella A., Cinzia Spinato, Jésus Raya, Alberto Bianco i Cécilia Ménard-Moyon. "Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR". Nanoscale 8, nr 28 (2016): 13714–21. http://dx.doi.org/10.1039/c6nr03846h.
Pełny tekst źródłaDong, Lei, Zhongxin Chen, Shan Lin, Ke Wang, Chen Ma i Hongbin Lu. "Reactivity-Controlled Preparation of Ultralarge Graphene Oxide by Chemical Expansion of Graphite". Chemistry of Materials 29, nr 2 (styczeń 2017): 564–72. http://dx.doi.org/10.1021/acs.chemmater.6b03748.
Pełny tekst źródłaHusein, Dalal Z., Reda Hassanien i Mona Khamis. "Cadmium oxide nanoparticles/graphene composite: synthesis, theoretical insights into reactivity and adsorption study". RSC Advances 11, nr 43 (2021): 27027–41. http://dx.doi.org/10.1039/d1ra04754j.
Pełny tekst źródłaBrisebois, Patrick P., Ricardo Izquierdo i Mohamed Siaj. "Room-Temperature Reduction of Graphene Oxide in Water by Metal Chloride Hydrates: A Cleaner Approach for the Preparation of Graphene@Metal Hybrids". Nanomaterials 10, nr 7 (28.06.2020): 1255. http://dx.doi.org/10.3390/nano10071255.
Pełny tekst źródłaLiu, Xin, Yanhui Sui, Changgong Meng i Yu Han. "Tuning the reactivity of Ru nanoparticles by defect engineering of the reduced graphene oxide support". RSC Adv. 4, nr 42 (2014): 22230–40. http://dx.doi.org/10.1039/c4ra02900c.
Pełny tekst źródłaNeri, Giulia, Enza Fazio, Antonia Nostro, Placido Giuseppe Mineo, Angela Scala, Antonio Rescifina i Anna Piperno. "Shedding Light on the Chemistry and the Properties of Münchnone Functionalized Graphene". Nanomaterials 11, nr 7 (22.06.2021): 1629. http://dx.doi.org/10.3390/nano11071629.
Pełny tekst źródłaPetrucci, Rita, Isabella Chiarotto, Leonardo Mattiello, Daniele Passeri, Marco Rossi, Giuseppe Zollo i and Marta Feroci. "Graphene Oxide: A Smart (Starting) Material for Natural Methylxanthines Adsorption and Detection". Molecules 24, nr 23 (21.11.2019): 4247. http://dx.doi.org/10.3390/molecules24234247.
Pełny tekst źródłaPolitano, Grazia Giuseppina, i Carlo Versace. "Variable Angle Spectroscopic Ellipsometry Characterization of Graphene Oxide in Methanol Films". Crystals 12, nr 5 (14.05.2022): 696. http://dx.doi.org/10.3390/cryst12050696.
Pełny tekst źródłaPansambal, Shreyas, Arpita Roy, Hamza Elsayed Ahmed Mohamed, Rajeshwari Oza, Canh Minh Vu, Abdolrazagh Marzban, Ankush Chauhan, Suresh Ghotekar i H. C. Ananda Murthy. "Recent Developments on Magnetically Separable Ferrite-Based Nanomaterials for Removal of Environmental Pollutants". Journal of Nanomaterials 2022 (26.09.2022): 1–15. http://dx.doi.org/10.1155/2022/8560069.
Pełny tekst źródłaAlruwashid, Firas S., Mushtaq A. Dar, Nabeel H. Alharthi i Hany S. Abdo. "Effect of Graphene Concentration on the Electrochemical Properties of Cobalt Ferrite Nanocomposite Materials". Nanomaterials 11, nr 10 (27.09.2021): 2523. http://dx.doi.org/10.3390/nano11102523.
Pełny tekst źródłaKonsolakis, Michalis, i Maria Lykaki. "Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions". Catalysts 10, nr 2 (1.02.2020): 160. http://dx.doi.org/10.3390/catal10020160.
Pełny tekst źródłaSandoval, Stefania, i Gerard Tobias. "Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments". Nanomaterials 10, nr 8 (24.07.2020): 1451. http://dx.doi.org/10.3390/nano10081451.
Pełny tekst źródłaDo Carmo, Devaney Ribeiro, i Daniela Silvestrini Fernandes. "Hybrid graphene oxide/DAB-Am-16 dendrimer: Preparation, characterization chemical reactivity and their electrocatalytic detection of l -Dopamine". Solid State Sciences 71 (wrzesień 2017): 33–41. http://dx.doi.org/10.1016/j.solidstatesciences.2017.07.005.
Pełny tekst źródłaTian, Junpeng, Cheng Yang, Jiping Yang, Shuangqiang Shi i Sijia Hao. "The correlated effects of polyetheramine-functionalized graphene oxide loading on the curing reaction and the mechanical properties of epoxy composites". High Performance Polymers 33, nr 7 (3.03.2021): 832–47. http://dx.doi.org/10.1177/0954008321996759.
Pełny tekst źródłaGhafuri, Hossein, Negar Joorabchi, Atefeh Emami i Hamid Reza Esmaili Zand. "Covalent Modification of Graphene Oxide with Vitamin B1: Preparation, Characterization, and Catalytic Reactivity for Synthesis of Benzimidazole Derivatives". Industrial & Engineering Chemistry Research 56, nr 22 (24.05.2017): 6462–67. http://dx.doi.org/10.1021/acs.iecr.7b00182.
Pełny tekst źródłaAman, Razia, Saima Sadiq, Muhammad Ali, Muhammad Sadiq, Jehan Gul, Khalid Saeed, Adnan Ali Khan i Sagheer Hussain Shah. "Facile route for green synthesis of N-benzylideneaniline over bimetallic reduced graphene oxide: chemical reactivity of 2,3,4-substituted derivatives of aniline". Research on Chemical Intermediates 45, nr 5 (23.02.2019): 2947–61. http://dx.doi.org/10.1007/s11164-019-03772-w.
Pełny tekst źródłaPerumal, Dharshini, Emmellie Laura Albert, Norazalina Saad, Taufiq Yap Yun Hin, Ruzniza Mohd Zawawi, Huey Fang Teh i Che Azurahanim Che Abdullah. "Fabrication and Characterization of Clinacanthus nutans Mediated Reduced Graphene Oxide Using a Green Approach". Crystals 12, nr 11 (28.10.2022): 1539. http://dx.doi.org/10.3390/cryst12111539.
Pełny tekst źródłaYu, Jiejie, Cong Wang, Quan Yuan, Xin Yu, Ding Wang i Yang Chen. "Ag-Modified Porous Perovskite-Type LaFeO3 for Efficient Ethanol Detection". Nanomaterials 12, nr 10 (22.05.2022): 1768. http://dx.doi.org/10.3390/nano12101768.
Pełny tekst źródłaChen, Yajie, Siyuan Xia, Wei Ren, Zilong Zheng, Junhong Chen, Kefeng Ma, Chunpei Yu, Xinli Zhou i Wenchao Zhang. "A Favorable Improvement in Reactivity between n-Al and Sheet-like Porous CuO as a Nanoenergetic Composite by Graphene Oxide Additives". Industrial & Engineering Chemistry Research 59, nr 29 (29.06.2020): 12934–42. http://dx.doi.org/10.1021/acs.iecr.0c02138.
Pełny tekst źródłaWang, Gang, Xiaochen Xu, Fenglin Yang, Hanmin Zhang i Dong Wang. "Using graphene oxide to reactivate the anaerobic ammonium oxidizers after long-term storage". Journal of Environmental Chemical Engineering 2, nr 2 (czerwiec 2014): 974–80. http://dx.doi.org/10.1016/j.jece.2014.03.014.
Pełny tekst źródłaJafargholinejad, Shapour, i Soheyl Soleymani. "Effects of carbon nano-additives on characteristics of TiC ceramics prepared by field-assisted sintering". Synthesis and Sintering 1, nr 1 (30.04.2021): 62–68. http://dx.doi.org/10.53063/synsint.2021.1123.
Pełny tekst źródłaFang, Zhonghang, Qunzhang Tu, Xuan Yang, Xinmin Shen, Qin Yin i Zhiyuan Chen. "Polydopamine and Mercapto Functionalized 3D Carbon Nano-Material Hybrids Synergistically Modifying Aramid Fibers for Adhesion Improvement". Polymers 14, nr 19 (23.09.2022): 3988. http://dx.doi.org/10.3390/polym14193988.
Pełny tekst źródłaMinella, M., M. Demontis, M. Sarro, F. Sordello, P. Calza i C. Minero. "Photochemical stability and reactivity of graphene oxide". Journal of Materials Science 50, nr 6 (6.01.2015): 2399–409. http://dx.doi.org/10.1007/s10853-014-8791-1.
Pełny tekst źródłaAslam, Sehrish, Tanveer Hussain Bokhari, Tauseef Anwar, Usman Khan, Adeela Nairan i Karim Khan. "Graphene oxide coated graphene foam based chemical sensor". Materials Letters 235 (styczeń 2019): 66–70. http://dx.doi.org/10.1016/j.matlet.2018.09.164.
Pełny tekst źródłaRamírez-Jiménez, Rafael, Mario Franco, Eduardo Rodrigo, Raquel Sainz, Rafael Ferritto, Al Mokhtar Lamsabhi, José Luis Aceña i M. Belén Cid. "Unexpected reactivity of graphene oxide with DBU and DMF". Journal of Materials Chemistry A 6, nr 26 (2018): 12637–46. http://dx.doi.org/10.1039/c8ta03529f.
Pełny tekst źródłaAbdelaal, Saad, Elsayed K. Elmaghraby, A. M. Abdelhady, M. Youssf, A. M. Rashad, I. I. Bashter i A. I. Helal. "The physical structure and surface reactivity of graphene oxide". Diamond and Related Materials 101 (styczeń 2020): 107613. http://dx.doi.org/10.1016/j.diamond.2019.107613.
Pełny tekst źródłaJACOBY, MITCH. "NANOREDUCTION OF GRAPHENE OXIDE". Chemical & Engineering News 88, nr 24 (14.06.2010): 12. http://dx.doi.org/10.1021/cen-v088n024.p012a.
Pełny tekst źródłaDRAHL, CARMEN. "CATALYSIS WITH GRAPHENE OXIDE". Chemical & Engineering News 88, nr 29 (19.07.2010): 8. http://dx.doi.org/10.1021/cen-v088n029.p008a.
Pełny tekst źródłaErickson, Kris, Rolf Erni, Zonghoon Lee, Nasim Alem, Will Gannett i Alex Zettl. "Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide". Advanced Materials 22, nr 40 (17.08.2010): 4467–72. http://dx.doi.org/10.1002/adma.201000732.
Pełny tekst źródłaMattson, Eric C., Kanupriya Pande, Miriam Unger, Shumao Cui, Ganhua Lu, M. Gajdardziska-Josifovska, Michael Weinert, Junhong Chen i Carol J. Hirschmugl. "Exploring Adsorption and Reactivity of NH3 on Reduced Graphene Oxide". Journal of Physical Chemistry C 117, nr 20 (10.05.2013): 10698–707. http://dx.doi.org/10.1021/jp3122853.
Pełny tekst źródłaOmar, Amina, Ahmed M. Bayoumy i Ahmed A. Aly. "Functionalized Graphene Oxide with Chitosan for Dopamine Biosensing". Journal of Functional Biomaterials 13, nr 2 (27.04.2022): 48. http://dx.doi.org/10.3390/jfb13020048.
Pełny tekst źródłaGOMEZ-ALVAREZ, M. A., A. DIAZ, I. MOTA, V. CABRERA i L. RESÉNDIZ. "NANOCOMPOSITES OF ZINC OXIDE ON GRAPHENE OXIDE: A RAPID REDUCTION OF GRAPHENE OXIDE". Digest Journal of Nanomaterials and Biostructures 16, nr 1 (styczeń 2021): 101–7. http://dx.doi.org/10.15251/djnb.2021.161.101.
Pełny tekst źródłaLi, Bing, Xintong Zhang, Peng Chen, Xinghua Li, Lingling Wang, Ceng Zhang, Weitao Zheng i Yichun Liu. "Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide–Ag nanoparticles film". RSC Adv. 4, nr 5 (2014): 2404–8. http://dx.doi.org/10.1039/c3ra45355c.
Pełny tekst źródłaCosta, Mariana C. F., Valeria S. Marangoni, Pei Rou Ng, Hang T. L. Nguyen, Alexandra Carvalho i A. H. Castro Neto. "Accelerated Synthesis of Graphene Oxide from Graphene". Nanomaterials 11, nr 2 (22.02.2021): 551. http://dx.doi.org/10.3390/nano11020551.
Pełny tekst źródłaKurmarayuni, Chandra Mohan, Basavaiah Chandu, Chandra Sekhar Devarapu, Lakshmi Prasanna Yangalasetty, Siva Jyothsna Gali, Srihari Chennuboyana i Hari Babu Bollikolla. "Preparation of Graphene from Graphene oxide by Chemical Reducing Agents". Caribbean Journal of Science and Technology 09, nr 01 (2021): 41–53. http://dx.doi.org/10.55434/cbi.2021.9109.
Pełny tekst źródłaSaraswat, Aditi, K. Pramoda, Koyendrila Debnath, Swaraj Servottam, Umesh V. Waghmare i C. N. R. Rao. "Chemical Route to Twisted Graphene, Graphene Oxide and Boron Nitride". Chemistry – A European Journal 26, nr 29 (31.03.2020): 6499–503. http://dx.doi.org/10.1002/chem.202000277.
Pełny tekst źródłaZhang, Meng Meng, Hong Xia Yan, Chao Gong i Yi Chen Feng. "Hyperbranched Polysiloxane Functionalized Graphene Oxide via Polyhydrosilylation". Applied Mechanics and Materials 464 (listopad 2013): 3–8. http://dx.doi.org/10.4028/www.scientific.net/amm.464.3.
Pełny tekst źródłaAnota, E. Chigo, R. E. Ramírez Gutiérrez, F. L. Pérez Sanchéz i J. F. Sanchéz Ramírez. "Structural Characteristics and Chemical Reactivity of Doped Graphene Nanosheets". Graphene 1, nr 1 (1.06.2013): 31–36. http://dx.doi.org/10.1166/graph.2013.1008.
Pełny tekst źródłaDenis, Pablo A. "Chemical Reactivity of Electron-Doped and Hole-Doped Graphene". Journal of Physical Chemistry C 117, nr 8 (12.02.2013): 3895–902. http://dx.doi.org/10.1021/jp306544m.
Pełny tekst źródłaPark, Myung Jin, Hae-Hyun Choi, Baekwon Park, Jae Yoon Lee, Chul-Ho Lee, Yong Seok Choi, Youngsoo Kim, Je Min Yoo, Hyukjin Lee i Byung Hee Hong. "Enhanced Chemical Reactivity of Graphene by Fermi Level Modulation". Chemistry of Materials 30, nr 16 (sierpień 2018): 5602–9. http://dx.doi.org/10.1021/acs.chemmater.8b01614.
Pełny tekst źródłaDenis, Pablo A. "Chemical Reactivity of Lithium Doped Monolayer and Bilayer Graphene". Journal of Physical Chemistry C 115, nr 27 (17.06.2011): 13392–98. http://dx.doi.org/10.1021/jp203547b.
Pełny tekst źródłaBissett, Mark A., Satoru Konabe, Susumu Okada, Masaharu Tsuji i Hiroki Ago. "Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain". ACS Nano 7, nr 11 (21.10.2013): 10335–43. http://dx.doi.org/10.1021/nn404746h.
Pełny tekst źródłaJiang, De-en, Bobby G. Sumpter i Sheng Dai. "Unique chemical reactivity of a graphene nanoribbon’s zigzag edge". Journal of Chemical Physics 126, nr 13 (7.04.2007): 134701. http://dx.doi.org/10.1063/1.2715558.
Pełny tekst źródłaDenis, Pablo A., i C. Pereyra Huelmo. "Structural characterization and chemical reactivity of dual doped graphene". Carbon 87 (czerwiec 2015): 106–15. http://dx.doi.org/10.1016/j.carbon.2015.01.049.
Pełny tekst źródła