Artykuły w czasopismach na temat „Graphene-metal nanostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene-metal nanostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chatterjee, Aniruddha, i Dharmesh Hansora. "Graphene Based Functional Hybrid Nanostructures: Preparation, Properties and Applications". Materials Science Forum 842 (luty 2016): 53–75. http://dx.doi.org/10.4028/www.scientific.net/msf.842.53.
Pełny tekst źródłaWiwatowski, Kamil, Paweł Podlas, Magdalena Twardowska i Sebastian Maćkowski. "Fluorescence Studies of the Interplay between Metal-Enhanced Fluorescence and Graphene-Induced Quenching". Materials 11, nr 10 (9.10.2018): 1916. http://dx.doi.org/10.3390/ma11101916.
Pełny tekst źródłaFesenko, Olean, Andrii Yaremkevich, Wolfgang Steinmaurer, Battulga Munkhbat, Calin Hrelescu i Francesco Bonaccorso. "Metal-graphene nanostructures for SEIRA spectroscopy". Molecular Crystals and Liquid Crystals 701, nr 1 (12.04.2020): 106–17. http://dx.doi.org/10.1080/15421406.2020.1741125.
Pełny tekst źródłaBai, Xiaoyan, Tianqi Cao, Tianyu Xia, Chenxiao Wu, Menglin Feng, Xinru Li, Ziqing Mei i in. "MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting". Nanomaterials 13, nr 4 (16.02.2023): 752. http://dx.doi.org/10.3390/nano13040752.
Pełny tekst źródłaGhopry, Samar Ali, Seyed M. Sadeghi, Cindy L. Berrie i Judy Z. Wu. "MoS2 Nanodonuts for High-Sensitivity Surface-Enhanced Raman Spectroscopy". Biosensors 11, nr 12 (25.11.2021): 477. http://dx.doi.org/10.3390/bios11120477.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaXia, Kangwei, Wei-Yi Chiang, Cesar Javier Lockhart de la Rosa, Yasuhiko Fujita, Shuichi Toyouchi, Haifeng Yuan, Jia Su i in. "Photo-induced electrodeposition of metallic nanostructures on graphene". Nanoscale 12, nr 20 (2020): 11063–69. http://dx.doi.org/10.1039/d0nr00934b.
Pełny tekst źródłaChen, Hsin-Yu, Yi-Hong Xiao, Lin-Jiun Chen, Chi-Ang Tseng i Chuan-Pei Lee. "Low-Dimensional Nanostructures for Electrochemical Energy Applications". Physics 2, nr 3 (11.09.2020): 481–502. http://dx.doi.org/10.3390/physics2030027.
Pełny tekst źródłaMarath Santhosh, Neelakandan Marath, Ana Dias, Janez Zavašnik, Elena Stefanova Tatarova i Uros Cvelbar. "Single-Step Atmospheric Pressure Plasma-Enabled Designing of Graphene Hybrids: A Green Approach for Energy Storage Materials". ECS Meeting Abstracts MA2022-02, nr 19 (9.10.2022): 891. http://dx.doi.org/10.1149/ma2022-0219891mtgabs.
Pełny tekst źródłaKhan, Mohammad Ehtisham, Mohammad Mansoob Khan i Moo Hwan Cho. "Recent progress of metal–graphene nanostructures in photocatalysis". Nanoscale 10, nr 20 (2018): 9427–40. http://dx.doi.org/10.1039/c8nr03500h.
Pełny tekst źródłaSingh, Narendra, Jai Prakash i Raju Kumar Gupta. "Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites". Molecular Systems Design & Engineering 2, nr 4 (2017): 422–39. http://dx.doi.org/10.1039/c7me00038c.
Pełny tekst źródłaWang, Wei, Shirui Guo, Isaac Ruiz, Mihrimah Ozkan i Cengiz S. Ozkan. "Synthesis of Three Dimensional Carbon Nanostructure Foams for Supercapacitors". MRS Proceedings 1451 (2012): 85–90. http://dx.doi.org/10.1557/opl.2012.1330.
Pełny tekst źródłaYakubovsky, Dmitry I., Yury V. Stebunov, Roman V. Kirtaev, Kirill V. Voronin, Artem A. Voronov, Aleksey V. Arsenin i Valentyn S. Volkov. "Graphene-Supported Thin Metal Films for Nanophotonics and Optoelectronics". Nanomaterials 8, nr 12 (15.12.2018): 1058. http://dx.doi.org/10.3390/nano8121058.
Pełny tekst źródłaAwasthi, Seema, Kalpana Awasthi i O. N. Srivastava. "Formation of Single-Walled Carbon Nanotube Buckybooks, Graphene Nanosheets and Metal Decorated Graphene". Journal of Nano Research 53 (czerwiec 2018): 37–53. http://dx.doi.org/10.4028/www.scientific.net/jnanor.53.37.
Pełny tekst źródłaZhang, Jianfa, Qilin Hong, Jinglan Zou, Yuwen He, Xiaodong Yuan, Zhihong Zhu i Shiqiao Qin. "Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor". Micromachines 11, nr 3 (4.03.2020): 268. http://dx.doi.org/10.3390/mi11030268.
Pełny tekst źródłaSeifert, Gotthard, Tommy Lorenz i Jan-Ole Joswig. "Layered Nanostructures – Electronic and Mechanical Properties". MRS Proceedings 1549 (2013): 3–9. http://dx.doi.org/10.1557/opl.2013.858.
Pełny tekst źródłaStylianakis, Minas M. "Optoelectronic Nanodevices". Nanomaterials 10, nr 3 (13.03.2020): 520. http://dx.doi.org/10.3390/nano10030520.
Pełny tekst źródłaTadyszak, Krzysztof, Andrzej Musiał, Adam Ostrowski i Jacek K. Wychowaniec. "Unraveling Origins of EPR Spectrum in Graphene Oxide Quantum Dots". Nanomaterials 10, nr 4 (21.04.2020): 798. http://dx.doi.org/10.3390/nano10040798.
Pełny tekst źródłaGalstyan, Vardan, Elisabetta Comini, Iskandar Kholmanov, Guido Faglia i Giorgio Sberveglieri. "Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors". RSC Advances 6, nr 41 (2016): 34225–32. http://dx.doi.org/10.1039/c6ra01913g.
Pełny tekst źródłaLi, Xiuli, Feng Zhang, Ban Fei, Yu Song, Bin Zhai i Xiuying Wang. "Controlled synthesis of three dimensional hierarchical graphene nanostructures from metal complexes as an anode material for lithium-ion batteries". CrystEngComm 22, nr 21 (2020): 3608–17. http://dx.doi.org/10.1039/d0ce00492h.
Pełny tekst źródłaGalstyan, Vardan, Elisabetta Comini, Iskandar Kholmanov, Andrea Ponzoni, Veronica Sberveglieri, Nicola Poli, Guido Faglia i Giorgio Sberveglieri. "A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors". Beilstein Journal of Nanotechnology 7 (10.10.2016): 1421–27. http://dx.doi.org/10.3762/bjnano.7.133.
Pełny tekst źródłaCheng, Lei, Jiajia Liu, Tao Chen, Meng Xu, Muwei Ji, Bing Zhang, Xiang Zhang i Jiatao Zhang. "Ternary cooperative Au–CdS–rGO hetero-nanostructures: synthesis with multi-interface control and their photoelectrochemical sensor applications". RSC Advances 6, nr 37 (2016): 30785–90. http://dx.doi.org/10.1039/c6ra02188c.
Pełny tekst źródłaTan, Chaoliang, Xiao Huang i Hua Zhang. "Synthesis and applications of graphene-based noble metal nanostructures". Materials Today 16, nr 1-2 (styczeń 2013): 29–36. http://dx.doi.org/10.1016/j.mattod.2013.01.021.
Pełny tekst źródłaSrivastava, Manish, Jay Singh, Tapas Kuila, Rama K. Layek, Nam Hoon Kim i Joong Hee Lee. "Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries". Nanoscale 7, nr 11 (2015): 4820–68. http://dx.doi.org/10.1039/c4nr07068b.
Pełny tekst źródłaChakraborty, Bhaswati, i Chirasree Roychaudhuri. "Metal/Metal Oxide Modified Graphene Nanostructures for Electrical Biosensing Applications: A Review". IEEE Sensors Journal 21, nr 16 (15.08.2021): 17629–42. http://dx.doi.org/10.1109/jsen.2021.3082554.
Pełny tekst źródłaZhou, Hengjie, Shaojian Su, Weibin Qiu, Zeyang Zhao, Zhili Lin, Pingping Qiu i Qiang Kan. "Multiple Fano Resonances with Tunable Electromagnetic Properties in Graphene Plasmonic Metamolecules". Nanomaterials 10, nr 2 (29.01.2020): 236. http://dx.doi.org/10.3390/nano10020236.
Pełny tekst źródłaAlharbi, Raed, i Mustafa Yavuz. "Promote Localized Surface Plasmonic Sensor Performance via Spin-Coating Graphene Flakes over Au Nano-Disk Array". Photonics 6, nr 2 (25.05.2019): 57. http://dx.doi.org/10.3390/photonics6020057.
Pełny tekst źródłaHiragond, Chaitanya B., Hwapyong Kim, Junho Lee, Saurav Sorcar, Can Erkey i Su-Il In. "Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures". Catalysts 10, nr 1 (9.01.2020): 98. http://dx.doi.org/10.3390/catal10010098.
Pełny tekst źródłaKavitha, P., C. Shanthi i R. Kannan. "Facile green synthesis of Ag, Au, AuAg@C-reduced graphene oxide nanohybrids and its catalytic studies". Digest Journal of Nanomaterials and Biostructures 18, nr 1 (styczeń 2023): 21–29. http://dx.doi.org/10.15251/djnb.2023.181.21.
Pełny tekst źródłaWu, Kong-Lin, Xiang-Zi Li, Xian-Wen Wei, Ting-Hui Ding, Miao Jiang, Wen-Juan Zhang i Yin Ye. "Controllable synthesis and property of graphene-based magnetic metal nanostructures". Solid State Sciences 38 (grudzień 2014): 90–96. http://dx.doi.org/10.1016/j.solidstatesciences.2014.10.005.
Pełny tekst źródłaStavrić, Srdjan, Milivoj Belić i Željko Šljivančanin. "Planar versus three-dimensional growth of metal nanostructures at graphene". Carbon 96 (styczeń 2016): 216–22. http://dx.doi.org/10.1016/j.carbon.2015.09.062.
Pełny tekst źródłaYan, Qiangu, i Zhiyong Cai. "Effect of Solvents on Fe–Lignin Precursors for Production Graphene-Based Nanostructures". Molecules 25, nr 9 (6.05.2020): 2167. http://dx.doi.org/10.3390/molecules25092167.
Pełny tekst źródłaXiao, Fei, Yuanqing Li, Xiaoli Zan, Kin Liao, Rong Xu i Hongwei Duan. "Growth of Metal-Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors". Advanced Functional Materials 22, nr 12 (21.03.2012): 2487–94. http://dx.doi.org/10.1002/adfm.201200191.
Pełny tekst źródłaSharma, Rohit, Radhapiyari Laishram, Bipin Kumar Gupta, Ritu Srivastva i Om Prakash Sinha. "A Review on MX2 (M = Mo, W and X = S, Se) layered material for opto-electronic devices". Advances in Natural Sciences: Nanoscience and Nanotechnology 13, nr 2 (18.05.2022): 023001. http://dx.doi.org/10.1088/2043-6262/ac5cb6.
Pełny tekst źródłaEmani, Naresh Kumar, Alexander V. Kildishev, Vladimir M. Shalaev i Alexandra Boltasseva. "Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance". Nanophotonics 4, nr 1 (24.07.2015): 214–23. http://dx.doi.org/10.1515/nanoph-2015-0014.
Pełny tekst źródłaHuang, Wei-Hao, Cheng-Hsuan Lin, Ben-Son Lin i Chia-Liang Sun. "Low-Temperature CVD Graphene Nanostructures on Cu and Their Corrosion Properties". Materials 11, nr 10 (15.10.2018): 1989. http://dx.doi.org/10.3390/ma11101989.
Pełny tekst źródłaMineo, Giacometta, Mario Scuderi, Gianni Pezzotti Escobar, Salvo Mirabella i Elena Bruno. "Engineering of Nanostructured WO3 Powders for Asymmetric Supercapacitors". Nanomaterials 12, nr 23 (24.11.2022): 4168. http://dx.doi.org/10.3390/nano12234168.
Pełny tekst źródłaCha, Myoung Jun, Woo Seok Song, Yoo Seok Kim, In Kyung Song, Dae Sung Jung, Suil Lee, Sung Hwan Kim, Sang Eun Park i Chong Yun Park. "MeV Electron-Beam Induced Clusterization of Platinum Chloride on Graphene for Transparent Conductive Electrodes". Advanced Materials Research 677 (marzec 2013): 25–30. http://dx.doi.org/10.4028/www.scientific.net/amr.677.25.
Pełny tekst źródłaCalandra, Pietro, Giuseppe Calogero, Alessandro Sinopoli i Pietro Giuseppe Gucciardi. "Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells". International Journal of Photoenergy 2010 (2010): 1–15. http://dx.doi.org/10.1155/2010/109495.
Pełny tekst źródłaWan, Yuan, Yuanxin Tan, Yang Yang, Haining Chong, Zhaozhong Meng i Jing Wang. "Actively Tunable Fano Resonance in H-Like Metal-Graphene Hybrid Nanostructures". Plasmonics 17, nr 2 (8.01.2022): 843–49. http://dx.doi.org/10.1007/s11468-021-01576-6.
Pełny tekst źródłaLi, Y. F., H. Q. Yu, H. Li, C. G. An, K. Zhang, K. M. Liew i X. F. Liu. "How Do Metal/Graphene Self-Assemble into Core−Shelled Composite Nanostructures?" Journal of Physical Chemistry C 115, nr 14 (23.03.2011): 6229–34. http://dx.doi.org/10.1021/jp1112262.
Pełny tekst źródłaRivolo, P., S. Bianco, A. Lamberti, A. Chiadò, C. Novara i F. Giorgis. "Graphene-Metal Nanostructures as Surface Enhanced Raman Scattering Substrates for Biosensing". Procedia Technology 27 (2017): 236–37. http://dx.doi.org/10.1016/j.protcy.2017.04.100.
Pełny tekst źródłaFisher, Caitlin, Amanda E. Rider, Zhao Jun Han, Shailesh Kumar, Igor Levchenko i Kostya (Ken) Ostrikov. "Applications and Nanotoxicity of Carbon Nanotubes and Graphene in Biomedicine". Journal of Nanomaterials 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/315185.
Pełny tekst źródłaŽurauskienė, Nerija. "Engineering of Advanced Materials for High Magnetic Field Sensing: A Review". Sensors 23, nr 6 (8.03.2023): 2939. http://dx.doi.org/10.3390/s23062939.
Pełny tekst źródłaErturan, Ahmet Murat, Seyfettin Sinan Gultekin i Habibe Durmaz. "Detection of 2,4-Dinitrotoluene by Metal-Graphene Hybrid Plasmonic Nanoantennas with a Golden Ratio Rectangular Resonator". Elektronika ir Elektrotechnika 29, nr 3 (27.06.2023): 33–38. http://dx.doi.org/10.5755/j02.eie.33869.
Pełny tekst źródłaGehringer, Dominik, Thomas Dengg, Maxim N. Popov i David Holec. "Interactions between a H2 Molecule and Carbon Nanostructures: A DFT Study". C — Journal of Carbon Research 6, nr 1 (24.03.2020): 16. http://dx.doi.org/10.3390/c6010016.
Pełny tekst źródłaBobrinetskiy, Ivan, Marko Radovic, Francesco Rizzotto, Priya Vizzini, Stefan Jaric, Zoran Pavlovic, Vasa Radonic, Maria Vesna Nikolic i Jasmina Vidic. "Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection". Nanomaterials 11, nr 10 (13.10.2021): 2700. http://dx.doi.org/10.3390/nano11102700.
Pełny tekst źródłaNicolosi, Valeria. "Processing and characterisation of two-dimensional nanostructures". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C510. http://dx.doi.org/10.1107/s2053273314094893.
Pełny tekst źródłaAlhakeem, Mohammed Ridha H. "Enhancing Thermal Conductivity and Heat Transfer using Graphene Nanofluid". International Journal of Multidisciplinary Sciences and Arts 1, nr 1 (9.09.2022): 95–103. http://dx.doi.org/10.47709/ijmdsa.v1i1.1710.
Pełny tekst źródłaYan, Siqi, Xiaolong Zhu, Jianji Dong, Yunhong Ding i Sanshui Xiao. "2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications". Nanophotonics 9, nr 7 (17.04.2020): 1877–900. http://dx.doi.org/10.1515/nanoph-2020-0074.
Pełny tekst źródła