Gotowa bibliografia na temat „Graphene-metal nanostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene-metal nanostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Graphene-metal nanostructures"
Chatterjee, Aniruddha, i Dharmesh Hansora. "Graphene Based Functional Hybrid Nanostructures: Preparation, Properties and Applications". Materials Science Forum 842 (luty 2016): 53–75. http://dx.doi.org/10.4028/www.scientific.net/msf.842.53.
Pełny tekst źródłaWiwatowski, Kamil, Paweł Podlas, Magdalena Twardowska i Sebastian Maćkowski. "Fluorescence Studies of the Interplay between Metal-Enhanced Fluorescence and Graphene-Induced Quenching". Materials 11, nr 10 (9.10.2018): 1916. http://dx.doi.org/10.3390/ma11101916.
Pełny tekst źródłaFesenko, Olean, Andrii Yaremkevich, Wolfgang Steinmaurer, Battulga Munkhbat, Calin Hrelescu i Francesco Bonaccorso. "Metal-graphene nanostructures for SEIRA spectroscopy". Molecular Crystals and Liquid Crystals 701, nr 1 (12.04.2020): 106–17. http://dx.doi.org/10.1080/15421406.2020.1741125.
Pełny tekst źródłaBai, Xiaoyan, Tianqi Cao, Tianyu Xia, Chenxiao Wu, Menglin Feng, Xinru Li, Ziqing Mei i in. "MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting". Nanomaterials 13, nr 4 (16.02.2023): 752. http://dx.doi.org/10.3390/nano13040752.
Pełny tekst źródłaGhopry, Samar Ali, Seyed M. Sadeghi, Cindy L. Berrie i Judy Z. Wu. "MoS2 Nanodonuts for High-Sensitivity Surface-Enhanced Raman Spectroscopy". Biosensors 11, nr 12 (25.11.2021): 477. http://dx.doi.org/10.3390/bios11120477.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaXia, Kangwei, Wei-Yi Chiang, Cesar Javier Lockhart de la Rosa, Yasuhiko Fujita, Shuichi Toyouchi, Haifeng Yuan, Jia Su i in. "Photo-induced electrodeposition of metallic nanostructures on graphene". Nanoscale 12, nr 20 (2020): 11063–69. http://dx.doi.org/10.1039/d0nr00934b.
Pełny tekst źródłaChen, Hsin-Yu, Yi-Hong Xiao, Lin-Jiun Chen, Chi-Ang Tseng i Chuan-Pei Lee. "Low-Dimensional Nanostructures for Electrochemical Energy Applications". Physics 2, nr 3 (11.09.2020): 481–502. http://dx.doi.org/10.3390/physics2030027.
Pełny tekst źródłaMarath Santhosh, Neelakandan Marath, Ana Dias, Janez Zavašnik, Elena Stefanova Tatarova i Uros Cvelbar. "Single-Step Atmospheric Pressure Plasma-Enabled Designing of Graphene Hybrids: A Green Approach for Energy Storage Materials". ECS Meeting Abstracts MA2022-02, nr 19 (9.10.2022): 891. http://dx.doi.org/10.1149/ma2022-0219891mtgabs.
Pełny tekst źródłaKhan, Mohammad Ehtisham, Mohammad Mansoob Khan i Moo Hwan Cho. "Recent progress of metal–graphene nanostructures in photocatalysis". Nanoscale 10, nr 20 (2018): 9427–40. http://dx.doi.org/10.1039/c8nr03500h.
Pełny tekst źródłaRozprawy doktorskie na temat "Graphene-metal nanostructures"
Khan, Hafeez Ullah. "Decoration of graphene sheets with metal and metal oxide nanostructures by low-pressure plasma deposition". Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/2038/1/Hafeez_Ullah_Thesis.pdf.
Pełny tekst źródłaSummerfield, Alex. "Studies of self-assembled metal-organic nanostructures and the MBE growth of graphene". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33067/.
Pełny tekst źródłaJean, Fabien. "Growth and structure of graphene on metal and growth of organized nanostructures on top". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY097/document.
Pełny tekst źródłaGraphene, a monolayer of graphite, is composed of carbon atoms arranged in a honeycomb lattice. Its exceptional properties have attracted a worldwide interest, including the Novel Prize in Physics in 2010. Epitaxial graphene on a metal was rapidly identified as an efficient method for large-area production of high quality graphene, and also was the matter of intense activities exploiting surface science approaches to address the various properties of graphene and of advanced systems based on graphene, for instance ordered lattice of metal nanoparticles on graphene. This resulted in the study of growth, structure and defects of epitaxial graphene on a wide variety of substrates with various techniques such as scanning tunneling microscopy, angle-resolved photoemission spectroscopy or low-energy electron microscopy. This work focuses on graphene grown on the (111) surface of iridium in ultra-high vacuum conditions and studied with several diffraction techniques (surface X-ray diffraction, grazing incidence X-ray diffraction, X-ray reflectivity, and reflection-high energy electron diffraction). These experiments were performed at the European Synchrotron Radiation Facility in Grenoble, France. The first step in our study was to determine the structure of graphene at the atomic scale. The system was found to have a tendency to commensurability, but that the precise structure depends on temperature and on preparation conditions. Moreover, with the combination of high resolution diffraction techniques, a precise characterization about the debated structure of graphene perpendicular to the surface was unveiled. The system, exhibits a superstructure, typical of epitaxial graphene, called a moiré, as an equivalent of the moiré effect in optics. This is used as a template to grown nanoparticles on top of the system to achieve the self-organisation of monodisperse nanoparticles. In this study, three type of nanoparticles were investigated, two different size of pure platinum ones and bimetallic ones, platinum and cobalt. These hybrid systems show very high degree of order, partly inherited by the superstructure lattice. The nanoparticles were found to strongly bond to their support, experience substantial surface strain related to their small size, and that bimetallic ones grown in a sequential manner retain a chemically layered structure
Mei, Jun. "Optimization of two-dimensional nanostructures for rechargeable batteries". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/135045/1/Jun%20Mei%20Thesis.pdf.
Pełny tekst źródłaDocherty, Callum James. "Terahertz spectroscopy of graphene and other two-dimensional materials". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:98c03952-dc3f-442b-bbc0-d8397645cc1b.
Pełny tekst źródłaPiloto, Carlo. "Carbon nanomaterials for room temperature gas sensing". Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/97743/1/Carlo_Piloto_Thesis_Redacted.pdf.
Pełny tekst źródłaBAKRY, AYYOB MOHAMMED A. "Applications of Chemically Modified Nitrogen Doped Carbon, Zirconium Phosphate, Metal Organic Frameworks, and Functionalized Graphene Oxide Nanostructured Adsorbents in Water Treatment". VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6105.
Pełny tekst źródłaLi, Yanguang. "Nanostructured Materials for Energy Applications". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275610758.
Pełny tekst źródłaBhardwaj, Shivani. "Plasmonic properties of graphene-metal nanostructures for broad spectral tailoring". Thesis, 2018. http://eprint.iitd.ac.in:80//handle/2074/7946.
Pełny tekst źródłaDas, Barun. "Investigations Of Graphene, Noble Metal Nanoparticles And Related Nanomaterials". Thesis, 2011. http://hdl.handle.net/2005/2432.
Pełny tekst źródłaKsiążki na temat "Graphene-metal nanostructures"
Materials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.
Pełny tekst źródłaPinto, Susana, Paula Marques, Carla Vilela, Ricardo João Borges Pinto, Armando Silvestre i Carmen Sofia da Rocha Freire Barros. Polysaccharide Based Hybrid Materials: Metals and Metal Oxides, Graphene and Carbon Nanotubes. Springer, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Graphene-metal nanostructures"
Mo, Runwei, i Yuan An. "3D Graphene for Metal–Air Batteries". W Carbon Nanostructures, 233–47. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36249-1_13.
Pełny tekst źródłaKoh, Jin Kwei, i Chin Wei Lai. "3D Graphene for Metal-Ion Batteries". W Carbon Nanostructures, 207–31. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36249-1_12.
Pełny tekst źródłaSinha, Ankita, Dhanjai, Jiping Chen i Rajeev Jain. "Functionalized Graphene-Metal Nanoparticles Nanohybrids as Electrochemical Sensors". W Carbon Nanostructures, 49–62. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9057-0_2.
Pełny tekst źródłaKaruppasamy, Lakshmanan, Lakshmanan Gurusamy, Gang-Juan Lee i Jerry J. Wu. "Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors". W Carbon Nanostructures, 1–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9057-0_1.
Pełny tekst źródłaNayak, Arpan Kumar, i Akshaya Kumar Swain. "Facile Room Temperature Synthesis of Reduced Graphene Oxide as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction". W Carbon Nanostructures, 259–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30207-8_10.
Pełny tekst źródłaRani, Sanju, Manoj Kumar, Yogesh Singh, Rahul Kumar i V. N. Singh. "Metal Oxide/CNT/Graphene Nanostructures for Chemiresistive Gas Sensors". W Chemical Methods for Processing Nanomaterials, 163–94. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429023187-10.
Pełny tekst źródłaLiu, Minmin, i Wei Chen. "Graphene-Supported Metal Nanostructures with Controllable Size and Shape as Advanced Electrocatalysts for Fuel Cells". W Graphene-based Energy Devices, 307–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch11.
Pełny tekst źródłaJaleh, Babak, Samira Naghdi, Nima Shahbazi i Mahmoud Nasrollahzadeh. "Fabrication and Application of Graphene Oxide-based Metal and Metal Oxide Nanocomposites". W Advances in Nanostructured Composites, 25–52. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-2.
Pełny tekst źródłaAli, Imran, Zeid A. ALOthman i Abdulrahman Alwarthan. "Removal of Metal Ions Using Graphene Based Adsorbents". W Nanostructured Materials for Treating Aquatic Pollution, 1–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33745-2_1.
Pełny tekst źródłaDey, Abhijit. "Recent Advances in Graphene Metal Oxide Based Nanocomposite for Energy Harvesting/Thermoelectric Application". W Advances in Nanostructured Composites, 442–81. Boca ERaton, FL : CRC Press, Taylor & Francis Group, 2018. | Series: A science publishers book | Series: Advances in nanostructured composites ; volume 1: CRC Press, 2019. http://dx.doi.org/10.1201/9781315118406-20.
Pełny tekst źródłaStreszczenia konferencji na temat "Graphene-metal nanostructures"
Ghamsari, Behnood G., Anthony Olivieri, Fabio Variola i Pierre Berini. "On-chip nonlinear plasmonics with graphene-metal nanostructures". W 2015 Photonics North. IEEE, 2015. http://dx.doi.org/10.1109/pn.2015.7292474.
Pełny tekst źródłaPierantoni, Luca, Davide Mencarelli i Matteo Stocchi. "Accurate analysis of plasmon propagation in metal and graphene nanostructures". W 2017 IEEE/MTT-S International Microwave Symposium - IMS 2017. IEEE, 2017. http://dx.doi.org/10.1109/mwsym.2017.8058956.
Pełny tekst źródłaPierantoni, Luca, Davide Mencarelli i Matteo Stocchi. "Accurate analysis of plasmon propagation in metal and graphene nanostructures". W 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2017. http://dx.doi.org/10.1109/imws-amp.2017.8247410.
Pełny tekst źródłaDong, Yuan, i Jian Lin. "Reactive Molecular Dynamics Simulation of Graphene-Based Nanomaterials Produced by Confined Heating of Polymer". W ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6716.
Pełny tekst źródłaTynyshtykbayev, Kurbangali, Chistos Spitas, Konstantinos Kostas i Zinetula Insepov. "GRAPHENE LOW-TEMPERATURE SYNTHESIS ON POROUS SILICON". W International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1551.silicon-2020/40-44.
Pełny tekst źródłaIakushev, D. A., i Servando Lopez-Aguayo. "Narrow-Pass-Band Amplification of THz Radiation by Dielectric-Metal Nanostructures with Optically Active Graphene-Based Inclusions". W Novel Optical Materials and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/noma.2017.nom4c.3.
Pełny tekst źródłaNorris, Pamela M., Justin L. Smoyer, John C. Duda i Patrick E. Hopkins. "Prediction and Measurement of Thermal Transport Across Interfaces Between Isotropic Solids and Graphitic Materials". W ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30171.
Pełny tekst źródłaJunjun Cheng, Jinfeng Zhu, Shuang Yan, Lirong Zhang i Qinghuo Liu. "A novel electro-optic modulator with metal/dielectric/graphene nanostructure: Simulation of isotropic and anisotropic graphene". W 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735311.
Pełny tekst źródła