Artykuły w czasopismach na temat „Graphene liquid interface”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene liquid interface”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Xianjue, i Colin L. Raston. "Liquid interface evolution of polyhedral-like graphene". Chemical Communications 51, nr 78 (2015): 14609–12. http://dx.doi.org/10.1039/c5cc05888k.
Pełny tekst źródłaPeng, Xiaoyi, Pengfei Jiang, Yulou Ouyang, Shuang Lu, Weijun Ren i Jie Chen. "Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure". Nanotechnology 33, nr 3 (29.10.2021): 035707. http://dx.doi.org/10.1088/1361-6528/ac2f5c.
Pełny tekst źródłaKam, Kevin, Brianne Tengan, Cody Hayashi, Richard Ordonez i David Garmire. "Polar Organic Gate Dielectrics for Graphene Field-Effect Transistor-Based Sensor Technology". Sensors 18, nr 9 (23.08.2018): 2774. http://dx.doi.org/10.3390/s18092774.
Pełny tekst źródłaShao, Jiao-Jing, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su i Quan-Hong Yang. "Graphene oxide hydrogel at solid/liquid interface". Chemical Communications 47, nr 20 (2011): 5771. http://dx.doi.org/10.1039/c1cc11166c.
Pełny tekst źródłaXin, Jing, Beibei Xie, Ya Li, Juanjuan Shang, Yujiao Qiu, Libing Liu, Shaofu Zhao, Lidan Fan i Renjie Zhang. "Formation of graphene oxide films at the liquid/liquid interface". Composite Interfaces 21, nr 7 (19.05.2014): 623–30. http://dx.doi.org/10.1080/15685543.2014.918789.
Pełny tekst źródłaWehrhold, Michel, Tilmann J. Neubert, Anur Yadav, Martin Vondráček, Rodrigo M. Iost, Jan Honolka i Kannan Balasubramanian. "pH sensitivity of interfacial electron transfer at a supported graphene monolayer". Nanoscale 11, nr 31 (2019): 14742–56. http://dx.doi.org/10.1039/c9nr05049c.
Pełny tekst źródłaPatil, Sagar H., Bihag Anothumakkool, Shivaram D. Sathaye i Kashinath R. Patil. "Architecturally designed Pt–MoS2 and Pt–graphene composites for electrocatalytic methanol oxidation". Physical Chemistry Chemical Physics 17, nr 39 (2015): 26101–10. http://dx.doi.org/10.1039/c5cp04141d.
Pełny tekst źródłaChen, Long, Liangliang Huang i Jiahua Zhu. "Stitching graphene oxide sheets into a membrane at a liquid/liquid interface". Chem. Commun. 50, nr 100 (21.10.2014): 15944–47. http://dx.doi.org/10.1039/c4cc07558g.
Pełny tekst źródłaAllaire, Ryan H., Abhijeet Dhakane, Reece Emery, P. Ganesh, Philip D. Rack, Lou Kondic, Linda Cummings i Miguel Fuentes-Cabrera. "Surface, Interface, and Temperature Effects on the Phase Separation and Nanoparticle Self Assembly of Bi-Metallic Ni0.5Ag0.5: A Molecular Dynamics Study". Nanomaterials 9, nr 7 (21.07.2019): 1040. http://dx.doi.org/10.3390/nano9071040.
Pełny tekst źródłaRodgers, Andrew N. J., i Robert A. W. Dryfe. "Oxygen Reduction at the Liquid-Liquid Interface: Bipolar Electrochemistry through Adsorbed Graphene Layers". ChemElectroChem 3, nr 3 (22.10.2015): 472–79. http://dx.doi.org/10.1002/celc.201500343.
Pełny tekst źródłaKolmakov, Andrei, Hongxuan Guo, Alexander Yulaev, Evgheni Strelcov i Alexander Tselev. "Polarization of the Graphene-Liquid Electrolyte Interface Probed by SEM". Microscopy and Microanalysis 24, S1 (sierpień 2018): 354–55. http://dx.doi.org/10.1017/s143192761800226x.
Pełny tekst źródłaCingolani, Juan Santiago, Martin Deimel, Simone Köcher, Christoph Scheurer, Karsten Reuter i Mie Andersen. "Interface between graphene and liquid Cu from molecular dynamics simulations". Journal of Chemical Physics 153, nr 7 (21.08.2020): 074702. http://dx.doi.org/10.1063/5.0020126.
Pełny tekst źródłaPolishchuk, Yu, S. Dubinevych, V. Zinin i E. Shembel. "Graphene-enhanced sulfur cathode with high interface stability in Li-S batteries". Journal of Physics: Conference Series 2382, nr 1 (1.11.2022): 012005. http://dx.doi.org/10.1088/1742-6596/2382/1/012005.
Pełny tekst źródłaHuang, Li-Jiao, Xue Tian, Jin-Tao Yi, Ru-Qin Yu i Xia Chu. "A turn-on upconversion fluorescence resonance energy transfer biosensor for ultrasensitive endonuclease detection". Analytical Methods 7, nr 18 (2015): 7474–79. http://dx.doi.org/10.1039/c5ay01169h.
Pełny tekst źródłaLiu, Yue E., Cheng En He, Ren Gui Peng, Wei Tang i Ying Kui Yang. "Ionic Liquid Assisted Dispersion of Reduced Graphene Oxide in Epoxy Composites with Improved Mechanical Properties". Advanced Materials Research 738 (sierpień 2013): 56–60. http://dx.doi.org/10.4028/www.scientific.net/amr.738.56.
Pełny tekst źródłaTrusova, Elena A., Klara V. Kotsareva, Alexey N. Kirichenko, Sergey S. Abramchuk i Igor A. Perezhogin. "Sonochemical Preparation and Subsequent Fixation of Oxygen-Free Graphene Sheets at N,N-Dimethyloctylamine-Aqua Boundary". Advances in Materials Science and Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/6026437.
Pełny tekst źródłaCui, Xinghong, Yanfang Zhu, Fei Li, Daijun Liu, Jianjun Chen, Yuxin Zhang, Li Li Zhang i Junyi Ji. "Enhanced rate capability of a lithium ion battery anode based on liquid–solid-solution assembly of Fe2O3 on crumpled graphene". RSC Advances 6, nr 11 (2016): 9007–12. http://dx.doi.org/10.1039/c5ra22408j.
Pełny tekst źródłaThomas, Loji K., i Michael Reichling. "Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM". Beilstein Journal of Nanotechnology 10 (1.04.2019): 804–10. http://dx.doi.org/10.3762/bjnano.10.80.
Pełny tekst źródłaCollins, Liam, Jason I. Kilpatrick, Ivan V. Vlassiouk, Alexander Tselev, Stefan A. L. Weber, Stephen Jesse, Sergei V. Kalinin i Brian J. Rodriguez. "Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface". Applied Physics Letters 104, nr 13 (31.03.2014): 133103. http://dx.doi.org/10.1063/1.4870074.
Pełny tekst źródłaD'Urso, Luisa, Cristina Satriano, Giuseppe Forte, Giuseppe Compagnini i Orazio Puglisi. "Water structure and charge transfer phenomena at the liquid–graphene interface". Physical Chemistry Chemical Physics 14, nr 42 (2012): 14605. http://dx.doi.org/10.1039/c2cp42249b.
Pełny tekst źródłaPatil, Sagar H., Aarti P. Gaikwad, Babasaheb J. Waghmode, Shivaram D. Sathaye i Kashinath R. Patil. "A graphene–MnO2 composite supercapacitor material accomplished tactically using liquid–liquid and solid–liquid interface reaction techniques". New Journal of Chemistry 44, nr 17 (2020): 6853–61. http://dx.doi.org/10.1039/c9nj05898b.
Pełny tekst źródłaMéndez-Morales, Trinidad, Jesús Carrete, Martín Pérez-Rodríguez, Óscar Cabeza, Luis J. Gallego, Ruth M. Lynden-Bell i Luis M. Varela. "Molecular dynamics simulations of the structure of the graphene–ionic liquid/alkali salt mixtures interface". Phys. Chem. Chem. Phys. 16, nr 26 (2014): 13271–78. http://dx.doi.org/10.1039/c4cp00918e.
Pełny tekst źródłaGudarzi, Mohsen Moazzami, i Farhad Sharif. "Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites". Soft Matter 7, nr 7 (2011): 3432. http://dx.doi.org/10.1039/c0sm01311k.
Pełny tekst źródłaChen, Shiue-Luen, Chong-You Chen, Jason Chia-Hsun Hsieh, Zih-Yu Yu, Sheng-Jen Cheng, Kuan Yu Hsieh, Jia-Wei Yang, Priyank V. Kumar, Shien-Fong Lin i Guan-Yu Chen. "Graphene Oxide-Based Biosensors for Liquid Biopsies in Cancer Diagnosis". Nanomaterials 9, nr 12 (3.12.2019): 1725. http://dx.doi.org/10.3390/nano9121725.
Pełny tekst źródłaGe, Xiangyu, Zhiyuan Chai, Qiuyu Shi, Yanfei Liu, Jiawei Tang i Wenzhong Wang. "Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts". Materials 15, nr 10 (16.05.2022): 3546. http://dx.doi.org/10.3390/ma15103546.
Pełny tekst źródłaLv, Wei, Zhangxun Xia, Sida Wu, Ying Tao, Feng-Min Jin, Baohua Li, Hongda Du, Zhen-Ping Zhu, Quan-Hong Yang i Feiyu Kang. "Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface". Journal of Materials Chemistry 21, nr 10 (2011): 3359. http://dx.doi.org/10.1039/c0jm02852e.
Pełny tekst źródłaShao, Jiao-Jing, Wei Lv, Quangui Guo, Chen Zhang, Qiang Xu, Quan-Hong Yang i Feiyu Kang. "Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface". Chem. Commun. 48, nr 31 (2012): 3706–8. http://dx.doi.org/10.1039/c1cc16838j.
Pełny tekst źródłaFedorov, Maxim V., i R. M. Lynden-Bell. "Probing the neutral graphene–ionic liquid interface: insights from molecular dynamics simulations". Physical Chemistry Chemical Physics 14, nr 8 (2012): 2552. http://dx.doi.org/10.1039/c2cp22730d.
Pełny tekst źródłaGómez-González, V., A. García-Fuente, A. Vega, J. Carrete, O. Cabeza, L. J. Gallego i L. M. Varela. "Density Functional Study of Charge Transfer at the Graphene/Ionic Liquid Interface". Journal of Physical Chemistry C 122, nr 27 (2.07.2018): 15070–77. http://dx.doi.org/10.1021/acs.jpcc.8b02795.
Pełny tekst źródłaZhang, Man, Jun Zhang, Zhenyao Ding, Haili Wang, Lihui Huang i Xinjian Feng. "Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays". Biomimetics 8, nr 1 (8.01.2023): 26. http://dx.doi.org/10.3390/biomimetics8010026.
Pełny tekst źródłaBramhaiah, Kommula, Vidya N. Singh i Neena S. John. "Three Dimensional Branched Gold Nanostructures on Reduced Graphene Oxide Films Formed at a Liquid/Liquid Interface". Particle & Particle Systems Characterization 31, nr 11 (1.07.2014): 1168–74. http://dx.doi.org/10.1002/ppsc.201400037.
Pełny tekst źródłaDiego, Michele, Marco Gandolfi, Stefano Giordano, Fabien Vialla, Aurélien Crut, Fabrice Vallée, Paolo Maioli, Natalia Del Fatti i Francesco Banfi. "Tuning photoacoustics with nanotransducers via thermal boundary resistance and laser pulse duration". Applied Physics Letters 121, nr 25 (19.12.2022): 252201. http://dx.doi.org/10.1063/5.0135147.
Pełny tekst źródłaPervez, Syed Atif, Milad Madinehei i Nima Moghimian. "Graphene in Solid-State Batteries: An Overview". Nanomaterials 12, nr 13 (5.07.2022): 2310. http://dx.doi.org/10.3390/nano12132310.
Pełny tekst źródłaVelasco-Velez, Juan J., Verena Pfeifer, Michael Hävecker, Robert S. Weatherup, Rosa Arrigo, Cheng-Hao Chuang, Eugen Stotz i in. "Photoelectron Spectroscopy at the Graphene-Liquid Interface Reveals the Electronic Structure of an Electrodeposited Cobalt/Graphene Electrocatalyst". Angewandte Chemie International Edition 54, nr 48 (14.10.2015): 14554–58. http://dx.doi.org/10.1002/anie.201506044.
Pełny tekst źródłaPurwidyantri, Agnes, Telma Domingues, Jérôme Borme, Joana Rafaela Guerreiro, Andrey Ipatov, Catarina M. Abreu, Marco Martins, Pedro Alpuim i Marta Prado. "Influence of the Electrolyte Salt Concentration on DNA Detection with Graphene Transistors". Biosensors 11, nr 1 (17.01.2021): 24. http://dx.doi.org/10.3390/bios11010024.
Pełny tekst źródłaKondo, Hiroki, Takayoshi Tsutsumi, Kenji Ishikawa, Makoto Sekine i Masaru Hori. "(Invited) Synthesis, Functionalization, and Three-Dimensional Structuring of Carbon Nanomaterials By Gas-Liquid Interface Plasma". ECS Meeting Abstracts MA2022-02, nr 18 (9.10.2022): 870. http://dx.doi.org/10.1149/ma2022-0218870mtgabs.
Pełny tekst źródłaLi, Kun, Jing Jie Sha, Lei Liu, Gen Sheng Wu, Wei Si i Yun Fei Chen. "Molecular Dynamics Study of Confined Fluid in Graphene Nanopores". Advanced Materials Research 1061-1062 (grudzień 2014): 205–8. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.205.
Pełny tekst źródłaKang, Sumin, Taeshik Yoon, Boo Soo Ma, Min Sun Cho i Taek-Soo Kim. "Liquid-assisted adhesion control of graphene–copper interface for damage-free mechanical transfer". Applied Surface Science 551 (czerwiec 2021): 149229. http://dx.doi.org/10.1016/j.apsusc.2021.149229.
Pełny tekst źródłaLu, Pengfei, Qiaobo Dai, Liangyu Wu i Xiangdong Liu. "Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface". Applied Sciences 7, nr 9 (12.09.2017): 939. http://dx.doi.org/10.3390/app7090939.
Pełny tekst źródłaWang, Zhuo, Xuesong Yang i Maggie Yihong Chen. "Assembly of Patterned Graphene Film Aided by Wetting/Nonwetting Surface on Liquid Interface". IEEE Transactions on Nanotechnology 13, nr 3 (maj 2014): 589–93. http://dx.doi.org/10.1109/tnano.2014.2312951.
Pełny tekst źródłaUysal, Ahmet, Hua Zhou, Guang Feng, Sang Soo Lee, Song Li, Paul Fenter, Peter T. Cummings i in. "Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface". Journal of Physical Chemistry C 118, nr 1 (19.12.2013): 569–74. http://dx.doi.org/10.1021/jp4111025.
Pełny tekst źródłaKim, Hyeri, Young Rae Jang, Jeseung Yoo, Young-Soo Seo, Ki-Yeon Kim, Jeong-Soo Lee, Soon-Dong Park, Chan-Joong Kim i Jaseung Koo. "Morphology Control of Surfactant-Assisted Graphene Oxide Films at the Liquid–Gas Interface". Langmuir 30, nr 8 (19.02.2014): 2170–77. http://dx.doi.org/10.1021/la403255q.
Pełny tekst źródłaCheong, Jun Young, Joon Ha Chang, Sung Joo Kim, Chanhoon Kim, Hyeon Kook Seo, Jae Won Shin, Jong Min Yuk, Jeong Yong Lee i Il-Doo Kim. "In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation". Microscopy and Microanalysis 23, nr 6 (grudzień 2017): 1107–15. http://dx.doi.org/10.1017/s1431927617012739.
Pełny tekst źródłaSiddaiah, Arpith, Pankaj Kumar, Artie Henderson, Manoranjan Misra i Pradeep L. Menezes. "Surface Energy and Tribology of Electrodeposited Ni and Ni–Graphene Coatings on Steel". Lubricants 7, nr 10 (9.10.2019): 87. http://dx.doi.org/10.3390/lubricants7100087.
Pełny tekst źródłaCotet, Liviu Cosmin, Klára Magyari, Milica Todea, Mircea Cristian Dudescu, Virginia Danciu i Lucian Baia. "Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water–ethanol suspension". Journal of Materials Chemistry A 5, nr 5 (2017): 2132–42. http://dx.doi.org/10.1039/c6ta08898h.
Pełny tekst źródłaButko A.V., Butko V.Y. i Kumzerov Y.A. "Optimization of graphene transistor sensors based on quantum capacitance and charge carrier mobility analysis". Physics of the Solid State 64, nr 12 (2022): 2041. http://dx.doi.org/10.21883/pss.2022.12.54405.441.
Pełny tekst źródłaKim, Hyeri, Jongsoon Kim, Hee-Sung Jeong, Hyungsub Kim, Hoyeon Lee, Jae-Min Ha, Sung-Min Choi i in. "Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid–gas interface for Li-ion battery anodes". Chemical Communications 54, nr 41 (2018): 5229–32. http://dx.doi.org/10.1039/c8cc02148a.
Pełny tekst źródłaKavitha, C., K. Bramhaiah, Neena S. John i Shantanu Aggarwal. "Improved surface-enhanced Raman and catalytic activities of reduced graphene oxide–osmium hybrid nano thin films". Royal Society Open Science 4, nr 9 (wrzesień 2017): 170353. http://dx.doi.org/10.1098/rsos.170353.
Pełny tekst źródłaLoulijat, Hamid. "Numerical study of the formation of liquid layer at the liquid–solid interface near the graphene in nanofluid". Materials Today: Proceedings 50 (2022): 2143–51. http://dx.doi.org/10.1016/j.matpr.2021.09.439.
Pełny tekst źródłaBiswas, Sanjib, i Lawrence T. Drzal. "A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid−Liquid Interface". Nano Letters 9, nr 1 (14.01.2009): 167–72. http://dx.doi.org/10.1021/nl802724f.
Pełny tekst źródła