Artykuły w czasopismach na temat „Graphene derivatives”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene derivatives”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Inagaki, Michio, i Feiyu Kang. "Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne". J. Mater. Chem. A 2, nr 33 (2014): 13193–206. http://dx.doi.org/10.1039/c4ta01183j.
Pełny tekst źródłaBanerjee, Arghya Narayan. "Graphene and its derivatives as biomedical materials: future prospects and challenges". Interface Focus 8, nr 3 (20.04.2018): 20170056. http://dx.doi.org/10.1098/rsfs.2017.0056.
Pełny tekst źródłaCao, Qiang, Xiao Geng, Huaipeng Wang, Pengjie Wang, Aaron Liu, Yucheng Lan i Qing Peng. "A Review of Current Development of Graphene Mechanics". Crystals 8, nr 9 (6.09.2018): 357. http://dx.doi.org/10.3390/cryst8090357.
Pełny tekst źródłaDolina, Ekaterina S., Pavel A. Kulyamin, Anastasiya A. Grekova, Alexey I. Kochaev, Mikhail M. Maslov i Konstantin P. Katin. "Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal". Materials 16, nr 5 (27.02.2023): 1964. http://dx.doi.org/10.3390/ma16051964.
Pełny tekst źródłaKumar, Sanjay, Himanshi, Jyoti Prakash, Ankit Verma, Suman, Rohit Jasrotia, Abhishek Kandwal i in. "A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites". Catalysts 13, nr 1 (4.01.2023): 111. http://dx.doi.org/10.3390/catal13010111.
Pełny tekst źródłaBagade, Sonal Santosh, Shashidhar Patel, M. M. Malik i Piyush K. Patel. "Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells". C 9, nr 3 (19.07.2023): 70. http://dx.doi.org/10.3390/c9030070.
Pełny tekst źródłaZhang, Liying, Chao Wu, Xiangdong Ding, Yong Fang i Jun Sun. "Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes". Physical Chemistry Chemical Physics 20, nr 27 (2018): 18192–99. http://dx.doi.org/10.1039/c8cp00466h.
Pełny tekst źródłaPumera, Martin, i Zdeněk Sofer. "Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others". Chemical Society Reviews 46, nr 15 (2017): 4450–63. http://dx.doi.org/10.1039/c7cs00215g.
Pełny tekst źródłaSajit, Rathin, B. Harinesh, M. P. Jenarthanan, M. Ramachandran i Prasanth Vidhya. "Thermal Characterization of Graphene Based Composites". 1 8, nr 1 (31.01.2022): 10–15. http://dx.doi.org/10.46632/jemm/8/1/2.
Pełny tekst źródłaHadizadeh, Nastaran, Saba Zeidi, Helia Khodabakhsh, Samaneh Zeidi, Aram Rezaei, Zhuobin Liang, Mojtaba Dashtizad i Ehsan Hashemi. "An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance". Nanotechnology Reviews 11, nr 1 (1.01.2022): 1076–100. http://dx.doi.org/10.1515/ntrev-2022-0063.
Pełny tekst źródłaTounici, Abir, i José Miguel Martín-Martínez. "Influence of the Surface Chemistry of Graphene Oxide on the Structure–Property Relationship of Waterborne Poly(urethane urea) Adhesive". Materials 14, nr 16 (5.08.2021): 4377. http://dx.doi.org/10.3390/ma14164377.
Pełny tekst źródłaKarlický, František, Kasibhatta Kumara Ramanatha Datta, Michal Otyepka i Radek Zbořil. "Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives". ACS Nano 7, nr 8 (15.07.2013): 6434–64. http://dx.doi.org/10.1021/nn4024027.
Pełny tekst źródłaSadiq, Iqra, Syed Asim Ali i Tokeer Ahmad. "Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting". Catalysts 13, nr 1 (3.01.2023): 109. http://dx.doi.org/10.3390/catal13010109.
Pełny tekst źródłaAhmadi, Roya, i Eysa Farajpour. "Theoretical study of the effect of the element silicon, the adsorption enthalpy nitrite, on the surface of graphene nanostructure". Ciência e Natura 37 (21.12.2015): 01. http://dx.doi.org/10.5902/2179460x20820.
Pełny tekst źródłaRadey, Hawraa H., Hadi Z. Al-Sawaad i Moayed N. Khalaf. "Synthesis and Characterization of Novel Nano Derivatives of Graphene Oxide". Graphene 07, nr 03 (2018): 17–29. http://dx.doi.org/10.4236/graphene.2018.73003.
Pełny tekst źródłaRomiszewska, Anna, i Aneta Bombalska. "Antibacterial properties of graphene and its derivatives". Bulletin of the Military University of Technology 68, nr 4 (28.02.2020): 69–84. http://dx.doi.org/10.5604/01.3001.0013.9731.
Pełny tekst źródłaKarimi, Samira, Emna Helal, Giovanna Gutierrez, Nima Moghimian, Milad Madinehei, Eric David, Mazen Samara i Nicole Demarquette. "A Review on Graphene’s Light Stabilizing Effects for Reduced Photodegradation of Polymers". Crystals 11, nr 1 (22.12.2020): 3. http://dx.doi.org/10.3390/cryst11010003.
Pełny tekst źródłaRabchinskii, Maxim K., Vladimir V. Shnitov, Maria Brzhezinskaya, Marina V. Baidakova, Dina Yu Stolyarova, Sergey A. Ryzhkov, Svyatoslav D. Saveliev i in. "Manifesting Epoxide and Hydroxyl Groups in XPS Spectra and Valence Band of Graphene Derivatives". Nanomaterials 13, nr 1 (21.12.2022): 23. http://dx.doi.org/10.3390/nano13010023.
Pełny tekst źródłaLi, Houxuan, Ge Zhao i Hong Zhang. "Recent Progress of Cement-Based Materials Modified by Graphene and Its Derivatives". Materials 16, nr 10 (17.05.2023): 3783. http://dx.doi.org/10.3390/ma16103783.
Pełny tekst źródłaJi, Guangmin, Jingkun Tian, Fei Xing i Yu Feng. "Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules". International Journal of Molecular Sciences 23, nr 18 (16.09.2022): 10838. http://dx.doi.org/10.3390/ijms231810838.
Pełny tekst źródłaTene, Talia, Stefano Bellucci, Marco Guevara, Fabian Arias Arias, Miguel Ángel Sáez Paguay, John Marcos Quispillo Moyota, Melvin Arias Polanco i in. "Adsorption of Mercury on Oxidized Graphenes". Nanomaterials 12, nr 17 (31.08.2022): 3025. http://dx.doi.org/10.3390/nano12173025.
Pełny tekst źródłaSantra, Chita Ranjan. "A Mini Review on Graphene - A Wonder Material for New Industrial and Biomedical Applications". American Journal of Applied Bio-Technology Research 2, nr 1 (1.01.2021): 26–29. http://dx.doi.org/10.15864/ajabtr.214.
Pełny tekst źródłaWang, Xu, Peng Lu, Yuan Li, Huining Xiao i Xiangyang Liu. "Antibacterial activities and mechanisms of fluorinated graphene and guanidine-modified graphene". RSC Advances 6, nr 11 (2016): 8763–72. http://dx.doi.org/10.1039/c5ra28030c.
Pełny tekst źródłaPiotrowski, Piotr, Agata Fedorczyk, Jacek Grebowski i Agnieszka Krogul-Sobczak. "Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials". C 8, nr 1 (11.03.2022): 17. http://dx.doi.org/10.3390/c8010017.
Pełny tekst źródłaKim, Taehoon, Gayeong Han i Yeonsu Jung. "Facile Fabrication of Polyvinyl Alcohol/Edge-Selectively Oxidized Graphene Composite Fibers". Materials 12, nr 21 (28.10.2019): 3525. http://dx.doi.org/10.3390/ma12213525.
Pełny tekst źródłaŻelechowska, Kamila, Marta Prześniak-Welenc, Marcin Łapiński, Izabela Kondratowicz i Tadeusz Miruszewski. "Fully scalable one-pot method for the production of phosphonic graphene derivatives". Beilstein Journal of Nanotechnology 8 (18.05.2017): 1094–103. http://dx.doi.org/10.3762/bjnano.8.111.
Pełny tekst źródłaPourmadadi, Mehrab, Fatemeh Yazdian, Sara Hojjati i Kianoush Khosravi-Darani. "Detection of Microorganisms Using Graphene-Based Nanobiosensors". Food Technology and Biotechnology 59, nr 4 (2021): 496–506. http://dx.doi.org/10.17113/ftb.59.04.21.7223.
Pełny tekst źródłaThi Thoa, Tran, Vu Chi Tuan, Pham Tho Hoan, Hoang Van Hung i Nguyen Thi Minh Hue. "Study of structural and electronic properties of graphene and some graphene derivatives based on orthorhombic unit cell by density functional theory". Vietnam Journal of Science and Technology 60, nr 5 (1.11.2022): 794–802. http://dx.doi.org/10.15625/2525-2518/16542.
Pełny tekst źródłaSahu, Dibyani, Harekrushna Sutar, Pragyan Senapati, Rabiranjan Murmu i Debashis Roy. "Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications". Journal of Composites Science 5, nr 7 (9.07.2021): 181. http://dx.doi.org/10.3390/jcs5070181.
Pełny tekst źródłaMohan, Velram Balaji. "Handling and Risk Mitigation of Nanoscale Graphene and Related Materials: Some Considerations and Recommendations". C 5, nr 3 (1.07.2019): 36. http://dx.doi.org/10.3390/c5030036.
Pełny tekst źródłaSun, Jianlin, i Shaonan Du. "Application of graphene derivatives and their nanocomposites in tribology and lubrication: a review". RSC Advances 9, nr 69 (2019): 40642–61. http://dx.doi.org/10.1039/c9ra05679c.
Pełny tekst źródłaRamakrishna, Tejaswini R. B., Tim D. Nalder, Wenrong Yang, Susan N. Marshall i Colin J. Barrow. "Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials". Journal of Materials Chemistry B 6, nr 20 (2018): 3200–3218. http://dx.doi.org/10.1039/c8tb00313k.
Pełny tekst źródłaSingh, Anoop, Aamir Ahmed, Asha Sharma i Sandeep Arya. "Graphene and Its Derivatives: Synthesis and Application in the Electrochemical Detection of Analytes in Sweat". Biosensors 12, nr 10 (21.10.2022): 910. http://dx.doi.org/10.3390/bios12100910.
Pełny tekst źródłaKoutsioukis, Apostolos, Katerina Vrettos, Vassiliki Belessi i Vasilios Georgakilas. "Conductivity Enhancement of Graphene and Graphene Derivatives by Silver Nanoparticles". Applied Sciences 13, nr 13 (27.06.2023): 7600. http://dx.doi.org/10.3390/app13137600.
Pełny tekst źródłaGenorio, Bostjan, i Miha Nosan. "Highly Exfoliated N-Doped Reduced Graphene Oxide Derivatives Synthesis and Application". ECS Meeting Abstracts MA2022-01, nr 7 (7.07.2022): 656. http://dx.doi.org/10.1149/ma2022-017656mtgabs.
Pełny tekst źródłaOprea, Madalina, i Stefan Ioan Voicu. "Cellulose Composites with Graphene for Tissue Engineering Applications". Materials 13, nr 23 (25.11.2020): 5347. http://dx.doi.org/10.3390/ma13235347.
Pełny tekst źródłaSun, Pengzhan, Kunlin Wang, Jinquan Wei, Minlin Zhong, Dehai Wu i Hongwei Zhu. "Magnetic transitions in graphene derivatives". Nano Research 7, nr 10 (16.08.2014): 1507–18. http://dx.doi.org/10.1007/s12274-014-0512-1.
Pełny tekst źródłaBarra, Ana, Jéssica D. C. Santos, Mariana R. F. Silva, Cláudia Nunes, Eduardo Ruiz-Hitzky, Idalina Gonçalves, Selçuk Yildirim, Paula Ferreira i Paula A. A. P. Marques. "Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications". Nanomaterials 10, nr 10 (21.10.2020): 2077. http://dx.doi.org/10.3390/nano10102077.
Pełny tekst źródłaAnsari, Mohammad Omaish, Kalamegam Gauthaman, Abdurahman Essa, Sidi A. Bencherif i Adnan Memic. "Graphene and Graphene-Based Materials in Biomedical Applications". Current Medicinal Chemistry 26, nr 38 (3.01.2019): 6834–50. http://dx.doi.org/10.2174/0929867326666190705155854.
Pełny tekst źródłaTian, Jing, Hongyu Shi, Haoquan Hu, Bo Chen, Yongfang Bao i Pu Tang. "Implementation of Atomically Thick Graphene and Its Derivatives in Electromagnetic Absorbers". Applied Sciences 9, nr 3 (23.01.2019): 388. http://dx.doi.org/10.3390/app9030388.
Pełny tekst źródłaJiang, Yi, Pratim Biswas i John D. Fortner. "A review of recent developments in graphene-enabled membranes for water treatment". Environmental Science: Water Research & Technology 2, nr 6 (2016): 915–22. http://dx.doi.org/10.1039/c6ew00187d.
Pełny tekst źródłaLi, Xiaojing, Kaili Lin i Zuolin Wang. "Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide". RSC Advances 7, nr 24 (2017): 14430–37. http://dx.doi.org/10.1039/c6ra25832h.
Pełny tekst źródłaBogdanovic, Gordana, i Aleksandar Djordjevic. "Carbon nanomaterials: Biologically active fullerene derivatives". Srpski arhiv za celokupno lekarstvo 144, nr 3-4 (2016): 222–31. http://dx.doi.org/10.2298/sarh1604222b.
Pełny tekst źródłaAvraham, Hanan, Yanir Kadosh, Eli Korin i Armand Bettelheim. "Charge and Hydrogen Storage Capacities of Electrodeposited Graphene Derivatives". ECS Meeting Abstracts MA2022-01, nr 7 (7.07.2022): 668. http://dx.doi.org/10.1149/ma2022-017668mtgabs.
Pełny tekst źródłaQazi, Umair Yaqub, i Rahat Javaid. "Graphene Utilization for Efficient Energy Storage and Potential Applications: Challenges and Future Implementations". Energies 16, nr 6 (22.03.2023): 2927. http://dx.doi.org/10.3390/en16062927.
Pełny tekst źródłaMuraru, Sebastian, Cosmin G. Samoila, Emil I. Slusanschi, Jorge S. Burns i Mariana Ionita. "Molecular Dynamics Simulations of DNA Adsorption on Graphene Oxide and Reduced Graphene Oxide-PEG-NH2 in the Presence of Mg2+ and Cl− ions". Coatings 10, nr 3 (20.03.2020): 289. http://dx.doi.org/10.3390/coatings10030289.
Pełny tekst źródłaLiu, Gongping, Wanqin Jin i Nanping Xu. "Graphene-based membranes". Chemical Society Reviews 44, nr 15 (2015): 5016–30. http://dx.doi.org/10.1039/c4cs00423j.
Pełny tekst źródłade Oliveira, Mário César Albuquerque, i Helinando Pequeno de Oliveira. "Strategies for Development of High-Performance Graphene-Based Supercapacitor". Current Graphene Science 3, nr 1 (28.12.2020): 2–10. http://dx.doi.org/10.2174/2452273203666190612122535.
Pełny tekst źródłaYang, Yin-Cai, Wei-Qing Huang, Liang Xu, Wangyu Hu, P. Peng i Gui-Fang Huang. "Hybrid TiO2/graphene derivatives nanocomposites: is functionalized graphene better than pristine graphene for enhanced photocatalytic activity?" Catalysis Science & Technology 7, nr 6 (2017): 1423–32. http://dx.doi.org/10.1039/c6cy02224c.
Pełny tekst źródłaAngizi, Shayan, Xianxuan Huang, Lea Hong, Md Ali Akbar, P. Ravi Selvaganapathy i Peter Kruse. "Defect Density-Dependent pH Response of Graphene Derivatives: Towards the Development of pH-Sensitive Graphene Oxide Devices". Nanomaterials 12, nr 11 (25.05.2022): 1801. http://dx.doi.org/10.3390/nano12111801.
Pełny tekst źródła