Gotowa bibliografia na temat „Graphene derivatives”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene derivatives”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Graphene derivatives"
Inagaki, Michio, i Feiyu Kang. "Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne". J. Mater. Chem. A 2, nr 33 (2014): 13193–206. http://dx.doi.org/10.1039/c4ta01183j.
Pełny tekst źródłaBanerjee, Arghya Narayan. "Graphene and its derivatives as biomedical materials: future prospects and challenges". Interface Focus 8, nr 3 (20.04.2018): 20170056. http://dx.doi.org/10.1098/rsfs.2017.0056.
Pełny tekst źródłaCao, Qiang, Xiao Geng, Huaipeng Wang, Pengjie Wang, Aaron Liu, Yucheng Lan i Qing Peng. "A Review of Current Development of Graphene Mechanics". Crystals 8, nr 9 (6.09.2018): 357. http://dx.doi.org/10.3390/cryst8090357.
Pełny tekst źródłaDolina, Ekaterina S., Pavel A. Kulyamin, Anastasiya A. Grekova, Alexey I. Kochaev, Mikhail M. Maslov i Konstantin P. Katin. "Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal". Materials 16, nr 5 (27.02.2023): 1964. http://dx.doi.org/10.3390/ma16051964.
Pełny tekst źródłaKumar, Sanjay, Himanshi, Jyoti Prakash, Ankit Verma, Suman, Rohit Jasrotia, Abhishek Kandwal i in. "A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites". Catalysts 13, nr 1 (4.01.2023): 111. http://dx.doi.org/10.3390/catal13010111.
Pełny tekst źródłaBagade, Sonal Santosh, Shashidhar Patel, M. M. Malik i Piyush K. Patel. "Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells". C 9, nr 3 (19.07.2023): 70. http://dx.doi.org/10.3390/c9030070.
Pełny tekst źródłaZhang, Liying, Chao Wu, Xiangdong Ding, Yong Fang i Jun Sun. "Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes". Physical Chemistry Chemical Physics 20, nr 27 (2018): 18192–99. http://dx.doi.org/10.1039/c8cp00466h.
Pełny tekst źródłaPumera, Martin, i Zdeněk Sofer. "Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others". Chemical Society Reviews 46, nr 15 (2017): 4450–63. http://dx.doi.org/10.1039/c7cs00215g.
Pełny tekst źródłaSajit, Rathin, B. Harinesh, M. P. Jenarthanan, M. Ramachandran i Prasanth Vidhya. "Thermal Characterization of Graphene Based Composites". 1 8, nr 1 (31.01.2022): 10–15. http://dx.doi.org/10.46632/jemm/8/1/2.
Pełny tekst źródłaHadizadeh, Nastaran, Saba Zeidi, Helia Khodabakhsh, Samaneh Zeidi, Aram Rezaei, Zhuobin Liang, Mojtaba Dashtizad i Ehsan Hashemi. "An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance". Nanotechnology Reviews 11, nr 1 (1.01.2022): 1076–100. http://dx.doi.org/10.1515/ntrev-2022-0063.
Pełny tekst źródłaRozprawy doktorskie na temat "Graphene derivatives"
Nair, Rahul Raveendran. "Atomic structure and properties of graphene and novel graphene derivatives". Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527419.
Pełny tekst źródłaEckmann, Axel. "Raman spectroscopy of graphene, its derivatives and graphene-based heterostructures". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/raman-spectroscopy-of-graphene-its-derivatives-and-graphenebased-heterostructures(fbb9d645-4fb3-4a75-b5c9-9a8483d6e9ac).html.
Pełny tekst źródłaJasim, Dhifaf. "Graphene oxide derivatives for biomedical applications". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/graphene-oxide-derivatives-for-biomedical-applications(83c552dc-50f6-4771-95b4-d1aace0db493).html.
Pełny tekst źródłaTreossi, Emanuele <1974>. "Chemical Production and Microelectronic Applications of Graphene and Nano-Graphene Derivatives". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4641/1/treossi_emanuele_tesi.pdf.
Pełny tekst źródłaTreossi, Emanuele <1974>. "Chemical Production and Microelectronic Applications of Graphene and Nano-Graphene Derivatives". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4641/.
Pełny tekst źródłaMANGADLAO, JOEY DACULA. "Multifunctional Materials from Nanostructured Graphene and Derivatives". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448279230.
Pełny tekst źródłaVAZQUEZ, SULLEIRO MANUEL. "COVALENT FUNCTIONALIZATION OF GRAPHENE DERIVATIVES FOR NOVEL CARBON INTERFACES". Doctoral thesis, Università degli Studi di Trieste, 2018. http://hdl.handle.net/11368/2919820.
Pełny tekst źródłaTsai, I.-Ling. "Magnetic properties of two-dimensional materials : graphene, its derivatives and molybdenum disulfide". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/magnetic-properties-of-twodimensional-materials-graphene-its-derivatives-and-molybdenum-disulfide(59dcba1b-332e-4a58-86f6-80ed56c7fdd1).html.
Pełny tekst źródłaHassan, Md Mahbub. "Synthesis of Graphene and its Derivatives for Electrochemical Energy Storage and Conversion Applications". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14069.
Pełny tekst źródłaWychowaniec, Jacek. "Designing nanostructured peptide hydrogels containing graphene oxide and its derivatives for tissue engineering and biomedical applications". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/designing-nanostructured-peptide-hydrogels-containing-graphene-oxide-and-its-derivatives-for-tissue-engineering-and-biomedical-applications(409e60a2-ed17-45bf-ab6c-b76ede937a67).html.
Pełny tekst źródłaKsiążki na temat "Graphene derivatives"
Mohanty, Kaustubha, S. Saran, B. E. Kumara Swamy i S. C. Sharma, red. Graphene and its Derivatives (Volume 2). Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4382-1.
Pełny tekst źródłaFunctionalized Graphene Nanocomposites and their Derivatives. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-00309-9.
Pełny tekst źródłaStaff, IntechOpen (Firm), Fabian I. Ezema i Ishaq Ahmad. Graphene and Its Derivatives: Synthesis and Applications. IntechOpen, 2019.
Znajdź pełny tekst źródłaStaff, IntechOpen (Firm), Fabian I. Ezema i Ishaq Ahmad. Graphene and Its Derivatives: Synthesis and Applications. IntechOpen, 2019.
Znajdź pełny tekst źródłaStaff, IntechOpen (Firm), Fabian I. Ezema i Ishaq Ahmad. Graphene and Its Derivatives: Synthesis and Applications. IntechOpen, 2019.
Znajdź pełny tekst źródłaGonzález-Domínguez, José Miguel, red. Properties and Applications of Graphene and Its Derivatives. MDPI, 2022. http://dx.doi.org/10.3390/books978-3-0365-4784-8.
Pełny tekst źródłaTour, James M., Chaudhery Mustansar Hussain, Ajeet Kumar Srivastav i Chandra Sekhar Tiwary. Graphene Extraction from Waste: A Sustainable Synthesis Approach for Graphene and Its Derivatives. Woodhead Publishing, 2022.
Znajdź pełny tekst źródłaTour, James M., Chaudhery Mustansar Hussai, Ajeet Kumar Srivastav i Chandra Sekhar Tiwary. Graphene Extraction from Waste: A Sustainable Synthesis Approach for Graphene and Its Derivatives. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaGraphene and Its Derivatives - Synthesis and Applications [Working Title]. IntechOpen, 2018. http://dx.doi.org/10.5772/intechopen.73354.
Pełny tekst źródłaJawaid, Mohammad, Abou el Kacem Qaiss i Rachid Bouhfid. Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications. Elsevier, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Graphene derivatives"
Zhou, Ruhong. "Graphene and Derivatives". W Modeling of Nanotoxicity, 61–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15382-7_4.
Pełny tekst źródłaAleksandrzak, Malgorzata, i Ewa Mijowska. "Graphene and Its Derivatives for Energy Storage". W Graphene Materials, 191–224. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119131816.ch6.
Pełny tekst źródłaPastrana-Martínez, Luisa M., Sergio Morales-Torres, José L. Figueiredo, Joaquim L. Faria i Adrián M. T. Silva. "Graphene Derivatives in Photocatalysis". W Graphene-based Energy Devices, 249–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch8.
Pełny tekst źródłaLong, Jing, i Gao Xueyun. "Electric Properties of Graphene and Its Chemisorption Derivatives". W Graphene Science Handbook, 237–52. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-16.
Pełny tekst źródłaSharma, Rukmani, Shreya Sharma i Anjana Sarkar. "Graphene and Its Derivatives: Fundamental Properties". W Graphene Based Biopolymer Nanocomposites, 25–40. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9180-8_2.
Pełny tekst źródłaBiswas, Subhadeep, Ankurita Nath i Anjali Pal. "Application of Graphene, Graphene Oxide and Reduced Graphene Oxide Based Composites for Removal of Chlorophenols from Aqueous Media". W Graphene and its Derivatives (Volume 2), 107–27. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4382-1_5.
Pełny tekst źródłaVizintin, Alen, Bostjan Genorio i Robert Dominko. "CHAPTER 8. Application of Graphene Derivatives in Lithium–Sulfur Batteries". W Chemically Derived Graphene, 222–41. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012829-00222.
Pełny tekst źródłaPaszkiewicz, Sandra, Anna Szymczyk i Zbigniew Rosłaniec. "Graphene Derivatives in Semicrystalline Polymer Composites". W Advanced 2D Materials, 145–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242635.ch5.
Pełny tekst źródłaLee, Seung J., i A. Rashid bin Mohd Yusoff. "Graphene and Its Derivatives for Highly Efficient Organic Photovoltaics". W Graphene-based Energy Devices, 379–406. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch15.
Pełny tekst źródłaPati Tripathi, Chandra Shekhar, Keshav Sharma, Mohd Ali i Debanjan Guin. "Synthetic Polymer–Graphene/Graphene Derivatives–Based Composites for Wastewater Treatment". W Polymer-Carbonaceous Filler Based Composites for Wastewater Treatment, 115–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003328094-7.
Pełny tekst źródłaStreszczenia konferencji na temat "Graphene derivatives"
Couris, S., i N. Liaros. "Nonlinear optical response of graphene derivatives". W 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876558.
Pełny tekst źródłaDiez Pascual, Ana Maria, Carlos Sainz-Urruela, Soledad Vera-López i María Paz San Andrés. "Graphene Oxides Derivatives Prepared by an Electrochemical Approach". W 2nd International Online-Conference on Nanomaterials. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iocn2020-07932.
Pełny tekst źródłaTsegaye, Mikiyas S., Patrick E. Hopkins, Avik W. Ghosh i Pamela M. Norris. "Calculating the Phonon Modes of Graphene Using the 4th Nearest Neighbor Force Constant Method". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66726.
Pełny tekst źródłaOtyepka, Michal. "Graphene derivatives as a versatile platform for catalytic applications". W nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.229.
Pełny tekst źródłaDemitri, Christian, Alfonsina Sara Tarantino, Anna Moscatello, Vincenzo Maria De Benedictis, Marta Madaghiele, Alessandro Sannino i Alfonso Maffezzoli. "Graphene reinforced Chitosan-Cinnamaldehyde derivatives films: antifungal activity and mechanical properties". W 2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM). IEEE, 2015. http://dx.doi.org/10.1109/nanofim.2015.8425334.
Pełny tekst źródłaMaras, Muhammad Artha Jabatsudewa, Siti Fauziyah Rahman i Gilar Wisnu Hardi. "Progressive graphene derivatives scaffold based for tissue engineering application: A review". W THE 5TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: Proceedings of the 5th International Symposium of Biomedical Engineering (ISBE) 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0047184.
Pełny tekst źródłaSilva, C. Alves da, P. Pötschke, F. Simon, M. Holzschuh, J. Pionteck, Heinrich, S. Wießner i C. Zimmerer. "Synthesis and characterization of graphene derivatives for application in magnetic high-field induction heating". W PROCEEDINGS OF THE EUROPE/AFRICA CONFERENCE DRESDEN 2017 – POLYMER PROCESSING SOCIETY PPS. Author(s), 2019. http://dx.doi.org/10.1063/1.5084903.
Pełny tekst źródłaGhafuri, Hossein, mahsan zargari, Parya Lotfi i Atefeh Emami. "Graphene-based polymer nanocomposite catalyzed one pot multi-component synthesis of chromene derivatives". W The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-a004.
Pełny tekst źródłaLi, Jiun-Ming, Po-Hsiung Chan, Chiang Juay Teo, Boo Cheong Khoo, Hongwei Duan i Van Cuong Mai. "Application of Graphene Oxide and its Derivatives in Gaseous Jet A-1/Air to Enhance Detonation Transition". W Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0423-cd.
Pełny tekst źródłaDekamin, Mohammadghorban, Farahnaz Davoodi i Zahra Alirezvani. "Highly efficient synthesis of benzopyranopyrimidine derivatives catalyzed by functionalized superparamagnetic graphene oxide as a new and recoverable catalyst". W The 21st International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecsoc-21-05068.
Pełny tekst źródła