Artykuły w czasopismach na temat „Graphene based 2-dimensional systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graphene based 2-dimensional systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dolina, Ekaterina S., Pavel A. Kulyamin, Anastasiya A. Grekova, Alexey I. Kochaev, Mikhail M. Maslov i Konstantin P. Katin. "Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal". Materials 16, nr 5 (27.02.2023): 1964. http://dx.doi.org/10.3390/ma16051964.
Pełny tekst źródłaKAN, ERJUN, ZHENYU LI i JINLONG YANG. "MAGNETISM IN GRAPHENE SYSTEMS". Nano 03, nr 06 (grudzień 2008): 433–42. http://dx.doi.org/10.1142/s1793292008001350.
Pełny tekst źródłaMarchenko, D., D. V. Evtushinsky, E. Golias, A. Varykhalov, Th Seyller i O. Rader. "Extremely flat band in bilayer graphene". Science Advances 4, nr 11 (listopad 2018): eaau0059. http://dx.doi.org/10.1126/sciadv.aau0059.
Pełny tekst źródłaKnoll, T., G. Jenke, A. Brenner, H. Schuck, A. Schultz, R. Warmers, A. Zumbülte i in. "Zweifarben-Druckanlage für die Sensorherstellung/Two-colour printing machine for sensor production - Rotary printing of foil-based graphene sensors". wt Werkstattstechnik online 107, nr 11-12 (2017): 827–33. http://dx.doi.org/10.37544/1436-4980-2017-11-12-51.
Pełny tekst źródłaBarlas, Yafis, Kun Yang i A. H. MacDonald. "Quantum Hall effects in graphene-based two-dimensional electron systems". Nanotechnology 23, nr 5 (11.01.2012): 052001. http://dx.doi.org/10.1088/0957-4484/23/5/052001.
Pełny tekst źródłaChen, Yiwen, Habibullah, Guanghui Xia, Chaonan Jin, Yao Wang, Yigang Yan, Yungui Chen, Xiufang Gong, Yuqiu Lai i Chaoling Wu. "Palladium-Phosphide-Modified Three-Dimensional Phospho-Doped Graphene Materials for Hydrogen Storage". Materials 16, nr 12 (7.06.2023): 4219. http://dx.doi.org/10.3390/ma16124219.
Pełny tekst źródłaWang, Xiunan, Yi Liu, Jingcheng Xu, Shengjuan Li, Fada Zhang, Qian Ye, Xiao Zhai i Xinluo Zhao. "Molecular Dynamics Study of Stability and Diffusion of Graphene-Based Drug Delivery Systems". Journal of Nanomaterials 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/872079.
Pełny tekst źródłaJana, Susmita, Arka Bandyopadhyay, Sujoy Datta, Debaprem Bhattacharya i Debnarayan Jana. "Emerging properties of carbon based 2D material beyond graphene". Journal of Physics: Condensed Matter 34, nr 5 (10.11.2021): 053001. http://dx.doi.org/10.1088/1361-648x/ac3075.
Pełny tekst źródłaKoppens, F. H. L., T. Mueller, Ph Avouris, A. C. Ferrari, M. S. Vitiello i M. Polini. "Photodetectors based on graphene, other two-dimensional materials and hybrid systems". Nature Nanotechnology 9, nr 10 (październik 2014): 780–93. http://dx.doi.org/10.1038/nnano.2014.215.
Pełny tekst źródłaSi, Wei, Chang Chen, Gensheng Wu, Qianyi Sun, Meng Yu, Yu Qiao i Jingjie Sha. "High Efficient Seawater Desalination Based on Parallel Nanopore Systems". Nano 16, nr 07 (21.06.2021): 2150077. http://dx.doi.org/10.1142/s1793292021500776.
Pełny tekst źródłaKaptagai, G. A., B. M. Satanova, F. U. Abuova, N. O. Koilyk, A. U. Abuova, S. A. Nurkenov i A. P. Zharkymbekova. "OPTICAL PROPERTIES OF LOW-DIMENSIONAL SYSTEMS: METHODS OF THEORETICAL STUDY OF 2D MATERIALS". NNC RK Bulletin, nr 4 (31.12.2022): 35–40. http://dx.doi.org/10.52676/1729-7885-2022-4-35-40.
Pełny tekst źródłaMeng, Yancheng, Baowen Li, Luxian Li i Jianqiang Zhang. "Buckling Behavior of Few-Layer Graphene on Soft Substrate". Coatings 12, nr 12 (17.12.2022): 1983. http://dx.doi.org/10.3390/coatings12121983.
Pełny tekst źródłaJorio, Ado. "Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and Nanometrology". ISRN Nanotechnology 2012 (6.12.2012): 1–16. http://dx.doi.org/10.5402/2012/234216.
Pełny tekst źródłaFang, Haiqiu, Dongfang Yang, Zizhen Su, Xinwei Sun, Jiahui Ren, Liwei Li i Kai Wang. "Preparation and Application of Graphene and Derived Carbon Materials in Supercapacitors: A Review". Coatings 12, nr 9 (8.09.2022): 1312. http://dx.doi.org/10.3390/coatings12091312.
Pełny tekst źródłaMonne, Mahmuda Akter, Peter Mack Grubb, Harold Stern, Harish Subbaraman, Ray T. Chen i Maggie Yihong Chen. "Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna". Micromachines 11, nr 9 (18.09.2020): 863. http://dx.doi.org/10.3390/mi11090863.
Pełny tekst źródłaLi, Jinhui, Guoping Zhang, Rong Sun i C. P. Wong. "Three-Dimensional Graphene-Based Composite for Elastic Strain Sensor Applications". MRS Advances 1, nr 34 (2016): 2415–20. http://dx.doi.org/10.1557/adv.2016.508.
Pełny tekst źródłaZhou, Fanglei, Mahdi Fathizadeh i Miao Yu. "Single- to Few-Layered, Graphene-Based Separation Membranes". Annual Review of Chemical and Biomolecular Engineering 9, nr 1 (7.06.2018): 17–39. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084046.
Pełny tekst źródłaYi, Lingjun, i Changhong Li. "Simulation Study of In-Phase and Out-Phase Enhanced Absorption of Graphene Based on Parity–Time Symmetry One-Dimensional Photonic Crystal Structure". Crystals 11, nr 12 (4.12.2021): 1513. http://dx.doi.org/10.3390/cryst11121513.
Pełny tekst źródłaKsiksi, M. A., M. K. Azizi, H. Ajlani i A. Gharsallah. "A Graphene based Frequency Reconfigurable Square Patch Antenna for Telecommunication Systems". Engineering, Technology & Applied Science Research 9, nr 5 (9.10.2019): 4846–50. http://dx.doi.org/10.48084/etasr.3061.
Pełny tekst źródłaWang, Yan, Lei Guo, Pengfei Qi, Xiaomin Liu i Gang Wei. "Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review". Nanomaterials 9, nr 8 (3.08.2019): 1123. http://dx.doi.org/10.3390/nano9081123.
Pełny tekst źródłaMeenakshi, Sudheesh Shukla, Jagriti Narang, Vinod Kumar, Penny Govender, Avi Niv, Chaudhery Hussain, Rui Wang, Bindu Mangla i Rajendran Babu. "Switchable Graphene-Based Bioelectronics Interfaces". Chemosensors 8, nr 2 (26.06.2020): 45. http://dx.doi.org/10.3390/chemosensors8020045.
Pełny tekst źródłaNavalón, Sergio, Wee-Jun Ong i Xiaoguang Duan. "Sustainable Catalytic Processes Driven by Graphene-Based Materials". Processes 8, nr 6 (5.06.2020): 672. http://dx.doi.org/10.3390/pr8060672.
Pełny tekst źródłaGhanbarlou, Hosna, Nikoline Loklindt Pedersen, Morten Enggrob Simonsen i Jens Muff. "Nitrogen-Doped Graphene Iron-Based Particle Electrode Outperforms Activated Carbon in Three-Dimensional Electrochemical Water Treatment Systems". Water 12, nr 11 (7.11.2020): 3121. http://dx.doi.org/10.3390/w12113121.
Pełny tekst źródłaZhang, Yani, Lei Zhou, Dun Qiao, Mengyin Liu, Hongyan Yang, Cheng Meng, Ting Miao, Jia Xue i Yiming Yao. "Progress on Optical Fiber Biochemical Sensors Based on Graphene". Micromachines 13, nr 3 (23.02.2022): 348. http://dx.doi.org/10.3390/mi13030348.
Pełny tekst źródłaKlimchitskaya, G. L. "Quantum field theory of the Casimir force for graphene". International Journal of Modern Physics A 31, nr 02n03 (20.01.2016): 1641026. http://dx.doi.org/10.1142/s0217751x16410268.
Pełny tekst źródłaKeel, Emma, Ammara Ejaz, Michael Mckinlay, Manuel Pelayo Garcia, Marco Caffio, Des Gibson i Carlos García Núñez. "Three-dimensional graphene foam based triboelectric nanogenerators for energy systems and autonomous sensors". Nano Energy 112 (lipiec 2023): 108475. http://dx.doi.org/10.1016/j.nanoen.2023.108475.
Pełny tekst źródłaKlimchitskaya, Galina L., i Vladimir M. Mostepanenko. "Casimir and Casimir-Polder Forces in Graphene Systems: Quantum Field Theoretical Description and Thermodynamics". Universe 6, nr 9 (9.09.2020): 150. http://dx.doi.org/10.3390/universe6090150.
Pełny tekst źródłaJayasekera, Thushari, K. W. Kim i M. Buongiorno Nardelli. "Electronic and Structural Properties of Turbostratic Epitaxial Graphene on the 6H-SiC (000-1) Surface". Materials Science Forum 717-720 (maj 2012): 595–600. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.595.
Pełny tekst źródłaShahzad, Asif, Jae-Min Oh, Mudassar Azam, Jibran Iqbal, Sabir Hussain, Waheed Miran i Kashif Rasool. "Advances in the Synthesis and Application of Anti-Fouling Membranes Using Two-Dimensional Nanomaterials". Membranes 11, nr 8 (9.08.2021): 605. http://dx.doi.org/10.3390/membranes11080605.
Pełny tekst źródłaLi, Cuimei, Tianya Li, Guangtao Yu i Wei Chen. "Theoretical Investigation of HER and OER Electrocatalysts Based on the 2D R-graphyne Completely Composed of Anti-Aromatic Carbon Rings". Molecules 28, nr 9 (5.05.2023): 3888. http://dx.doi.org/10.3390/molecules28093888.
Pełny tekst źródłaTian, Jingkun, Fei Xing i Qiqian Gao. "Graphene-Based Nanomaterials as the Cathode for Lithium-Sulfur Batteries". Molecules 26, nr 9 (25.04.2021): 2507. http://dx.doi.org/10.3390/molecules26092507.
Pełny tekst źródłaKausar, Ayesha, Ishaq Ahmad, M. H. Eisa i Malik Maaza. "Graphene Nanocomposites in Space Sector—Fundamentals and Advancements". C 9, nr 1 (3.03.2023): 29. http://dx.doi.org/10.3390/c9010029.
Pełny tekst źródłaPanin, Gennady N. "Low-Dimensional Layered Light-Sensitive Memristive Structures for Energy-Efficient Machine Vision". Electronics 11, nr 4 (17.02.2022): 619. http://dx.doi.org/10.3390/electronics11040619.
Pełny tekst źródłaRaagulan, Kanthasamy, Bo Mi Kim i Kyu Yun Chai. "Recent Advancement of Electromagnetic Interference (EMI) Shielding of Two Dimensional (2D) MXene and Graphene Aerogel Composites". Nanomaterials 10, nr 4 (8.04.2020): 702. http://dx.doi.org/10.3390/nano10040702.
Pełny tekst źródłaXiao, Yang, Fang Luo, Yuchen Zhang, Feng Hu, Mengjian Zhu i Shiqiao Qin. "A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications". Micromachines 13, nr 2 (29.01.2022): 215. http://dx.doi.org/10.3390/mi13020215.
Pełny tekst źródłaPugno, N. "Non-linear statics and dynamics of nanoelectromechanical systems based on nanoplates and nanowires". Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, nr 1 (1.03.2005): 29–40. http://dx.doi.org/10.1243/174034905x5593.
Pełny tekst źródłaGhosal, Supriya, i Debnarayan Jana. "Beyond T-graphene: Two-dimensional tetragonal allotropes and their potential applications". Applied Physics Reviews 9, nr 2 (czerwiec 2022): 021314. http://dx.doi.org/10.1063/5.0088275.
Pełny tekst źródłaMemisoglu, Gorkem, Raghavan Chinnambedu Murugesan, Joseba Zubia i Aleksey G. Rozhin. "Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications". Membranes 13, nr 2 (22.01.2023): 145. http://dx.doi.org/10.3390/membranes13020145.
Pełny tekst źródłaJoe, Daniel J., Eunpyo Park, Dong Hyun Kim, Il Doh, Hyun-Cheol Song i Joon Young Kwak. "Graphene and Two-Dimensional Materials-Based Flexible Electronics for Wearable Biomedical Sensors". Electronics 12, nr 1 (22.12.2022): 45. http://dx.doi.org/10.3390/electronics12010045.
Pełny tekst źródłaPatole, Shashikant. "Green Approach for Fabrication of Holey Graphene Based Electrode for Supercapacitor Application". ECS Meeting Abstracts MA2022-01, nr 7 (7.07.2022): 626. http://dx.doi.org/10.1149/ma2022-017626mtgabs.
Pełny tekst źródłaHernandez Linares, I. G., i G. Gonzalez de la Cruz. "Role of Plasmon Modes on the Optical Reflectivity of Graphene-Metallic Structures: A Theoretical Approach". Journal of Nano Research 60 (listopad 2019): 76–85. http://dx.doi.org/10.4028/www.scientific.net/jnanor.60.76.
Pełny tekst źródłaChen, Guangze, Maryam Khosravian, Jose L. Lado i Aline Ramires. "Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation". 2D Materials 9, nr 2 (2.02.2022): 024002. http://dx.doi.org/10.1088/2053-1583/ac4af8.
Pełny tekst źródłaWang, Ying, Yue Shen, Xingya Wang, Zhiwei Shen, Bin Li, Jun Hu i Yi Zhang. "Nanoscale mapping of dielectric properties based on surface adhesion force measurements". Beilstein Journal of Nanotechnology 9 (16.03.2018): 900–906. http://dx.doi.org/10.3762/bjnano.9.84.
Pełny tekst źródłaAhmad, Varish, i Mohammad Omaish Ansari. "Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare". Nanomaterials 12, nr 22 (14.11.2022): 4002. http://dx.doi.org/10.3390/nano12224002.
Pełny tekst źródłaCheng, Chi, Gengping Jiang, Christopher J. Garvey, Yuanyuan Wang, George P. Simon, Jefferson Z. Liu i Dan Li. "Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing". Science Advances 2, nr 2 (luty 2016): e1501272. http://dx.doi.org/10.1126/sciadv.1501272.
Pełny tekst źródłaWu, Zhiqiang, Jun Wei, Rongzhen Dong i Hao Chen. "A Three-Dimensional Strain Rosette Sensor Based on Graphene Composite with Piezoresistive Effect". Journal of Sensors 2019 (22.11.2019): 1–12. http://dx.doi.org/10.1155/2019/2607893.
Pełny tekst źródłaKarbalaei Akbari, Mohammad, Nasrin Siraj Lopa, Marina Shahriari, Aliasghar Najafzadehkhoee, Dušan Galusek i Serge Zhuiykov. "Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing". Journal of Functional Biomaterials 14, nr 1 (7.01.2023): 35. http://dx.doi.org/10.3390/jfb14010035.
Pełny tekst źródłaDatta, Dibakar. "(Invited, Digital Presentation) Understanding Interfacial Chemo-Mechanics of Two-Dimensional Materials-Based Heterogeneous Functional Materials for Energy Storage". ECS Meeting Abstracts MA2022-01, nr 38 (7.07.2022): 1655. http://dx.doi.org/10.1149/ma2022-01381655mtgabs.
Pełny tekst źródłaÖzkan, Doğuş, M. Cenk Özekinci, Zeynep Taşlıçukur Öztürk i Egemen Sulukan. "Two Dimensional Materials for Military Applications". Defence Science Journal 70, nr 6 (12.10.2020): 672–81. http://dx.doi.org/10.14429/dsj.70.15879.
Pełny tekst źródłaKuznetsov, A. A., N. R. Maksimova, V. S. Kaimonov, G. N. Alexandrov i S. A. Smagulova. "A New Approach To the Diagnosis of Point Mutations in Native DNA Using Graphene Oxide". Acta Naturae 8, nr 2 (15.06.2016): 87–91. http://dx.doi.org/10.32607/20758251-2016-8-2-87-91.
Pełny tekst źródła