Gotowa bibliografia na temat „Graphene based 2-dimensional systems”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Graphene based 2-dimensional systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Graphene based 2-dimensional systems"

1

Dolina, Ekaterina S., Pavel A. Kulyamin, Anastasiya A. Grekova, Alexey I. Kochaev, Mikhail M. Maslov, and Konstantin P. Katin. "Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal." Materials 16, no. 5 (2023): 1964. http://dx.doi.org/10.3390/ma16051964.

Pełny tekst źródła
Streszczenie:
We report the geometry, kinetic energy, and some optical properties of the 6,6,12-graphyne-based systems. We obtained the values of their binding energies and structural characteristics such as bond lengths and valence angles. Moreover, using nonorthogonal tight-binding molecular dynamics, we carried out a comparative analysis of the thermal stability of 6,6,12-graphyne-based isolated fragments (oligomer) and two-dimensional crystals constructed on its basis in a wide temperature range from 2500 to 4000 K. We found the temperature dependence of the lifetime for the finite graphyne-based oligomer as well as for the 6,6,12-graphyne crystal using a numerical experiment. From these temperature dependencies, we obtained the activation energies and frequency factors in the Arrhenius equation that determine the thermal stability of the considered systems. The calculated activation energies are fairly high: 1.64 eV for the 6,6,12-graphyne-based oligomer and 2.79 eV for the crystal. It was confirmed that the thermal stability of the 6,6,12-graphyne crystal concedes only to traditional graphene. At the same time, it is more stable than graphene derivatives such as graphane and graphone. In addition, we present data on the Raman and IR spectra of the 6,6,12-graphyne, which will help distinguish it from the other carbon low-dimensional allotropes in the experiment.
Style APA, Harvard, Vancouver, ISO itp.
2

KAN, ERJUN, ZHENYU LI, and JINLONG YANG. "MAGNETISM IN GRAPHENE SYSTEMS." Nano 03, no. 06 (2008): 433–42. http://dx.doi.org/10.1142/s1793292008001350.

Pełny tekst źródła
Streszczenie:
Graphene has attracted great interest in materials science, owing to its novel electronic structures. Recently, magnetism discovered in graphene-based systems has opened up the possibility of their spintronics application. This paper provides a comprehensive review of the magnetic behaviors and electronic structures of graphene systems, including two-dimensional graphene, one-dimensional graphene nanoribbons, and zero-dimensional graphene nanoclusters. Theoretical research suggests that such metal-free magnetism mainly comes from the localized states or edges states. By applying an external electric field, or by chemical modification, we can turn the zigzag nanoribbon systems into half metal, thus obtaining a perfect spin filter.
Style APA, Harvard, Vancouver, ISO itp.
3

Marchenko, D., D. V. Evtushinsky, E. Golias, A. Varykhalov, Th Seyller, and O. Rader. "Extremely flat band in bilayer graphene." Science Advances 4, no. 11 (2018): eaau0059. http://dx.doi.org/10.1126/sciadv.aau0059.

Pełny tekst źródła
Streszczenie:
We propose a novel mechanism of flat band formation based on the relative biasing of only one sublattice against other sublattices in a honeycomb lattice bilayer. The mechanism allows modification of the band dispersion from parabolic to “Mexican hat”–like through the formation of a flattened band. The mechanism is well applicable for bilayer graphene—both doped and undoped. By angle-resolved photoemission from bilayer graphene on SiC, we demonstrate the possibility of realizing this extremely flattened band (< 2-meV dispersion), which extends two-dimensionally in a k-space area around the K¯ point and results in a disk-like constant energy cut. We argue that our two-dimensional flat band model and the experimental results have the potential to contribute to achieving superconductivity of graphene- or graphite-based systems at elevated temperatures.
Style APA, Harvard, Vancouver, ISO itp.
4

Knoll, T., G. Jenke, A. Brenner, et al. "Zweifarben-Druckanlage für die Sensorherstellung/Two-colour printing machine for sensor production - Rotary printing of foil-based graphene sensors." wt Werkstattstechnik online 107, no. 11-12 (2017): 827–33. http://dx.doi.org/10.37544/1436-4980-2017-11-12-51.

Pełny tekst źródła
Streszczenie:
Der Fachartikel stellt eine kompakte Zweifarben-Druckanlage für die Fertigung folienbasierter Sensoren aus Graphen vor. Mithilfe einer Graphentinte sowie eines rotativen Tiefdruckverfahrens lassen sich zweidimensionale Elektrodenstrukturen beliebiger Geometrie in hohen Stückzahlen fertigen. Beschrieben werden die Druckanlage, die Herstellung der Tiefdruckzylinder und der graphenbasierten Tinte sowie die bisher beim Drucken von Elektroden für zellbasierte Sensoren erzielten Ergebnisse.   The article presents a compact two-colour printing system for the production of foil-based sensors made of graphene. Graphene is a suitable material for electrodes of cell-based sensors. If graphene is used as a printable ink, two-dimensional electrode structures of any geometry can be produced. The article describes the printing system, the production of the gravure cylinders and the graphene-based ink as well as the results of printing experiments achieved so far.
Style APA, Harvard, Vancouver, ISO itp.
5

Barlas, Yafis, Kun Yang, and A. H. MacDonald. "Quantum Hall effects in graphene-based two-dimensional electron systems." Nanotechnology 23, no. 5 (2012): 052001. http://dx.doi.org/10.1088/0957-4484/23/5/052001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, Yiwen, Habibullah, Guanghui Xia, et al. "Palladium-Phosphide-Modified Three-Dimensional Phospho-Doped Graphene Materials for Hydrogen Storage." Materials 16, no. 12 (2023): 4219. http://dx.doi.org/10.3390/ma16124219.

Pełny tekst źródła
Streszczenie:
The development of efficient hydrogen storage materials is crucial for advancing hydrogen-based energy systems. In this study, we prepared a highly innovative palladium-phosphide-modified P-doped graphene hydrogen storage material with a three-dimensional configuration (3D Pd3P0.95/P-rGO) using a hydrothermal method followed by calcination. This 3D network hindering the stacking of graphene sheets provided channels for hydrogen diffusion to improve the hydrogen adsorption kinetics. Importantly, the construction of the three-dimensional palladium-phosphide-modified P-doped graphene hydrogen storage material improved the hydrogen absorption kinetics and mass transfer process. Furthermore, while acknowledging the limitations of primitive graphene as a medium in hydrogen storage, this study addressed the need for improved graphene-based materials and highlighted the significance of our research in exploring three-dimensional configurations. The hydrogen absorption rate of the material increased obviously in the first 2 h compared with two-dimensional sheets of Pd3P/P-rGO. Meanwhile, the corresponding 3D Pd3P0.95/P-rGO-500 sample, which was calcinated at 500 °C, achieved the optimal hydrogen storage capacity of 3.79 wt% at 298 K/4 MPa. According to molecular dynamics, the structure was thermodynamically stable, and the calculated adsorption energy of a single H2 molecule was −0.59 eV/H2, which was in the ideal range of hydrogen ad/desorption. These findings pave the way for the development of efficient hydrogen storage systems and advance the progress of hydrogen-based energy technologies.
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Xiunan, Yi Liu, Jingcheng Xu, et al. "Molecular Dynamics Study of Stability and Diffusion of Graphene-Based Drug Delivery Systems." Journal of Nanomaterials 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/872079.

Pełny tekst źródła
Streszczenie:
Graphene, a two-dimensional nanomaterial with unique biomedical properties, has attracted great attention due to its potential applications in graphene-based drug delivery systems (DDS). In this work graphene sheets with various sizes and graphene oxide functionalized with polyethylene glycol (GO-PEG) are utilized as nanocarriers to load anticancer drug molecules including CE6, DOX, MTX, and SN38. We carried out molecular dynamics calculations to explore the energetic stabilities and diffusion behaviors of the complex systems with focuses on the effects of the sizes and functionalization of graphene sheets as well as the number and types of drug molecules. Our study shows that the binding of graphene-drug complex is favorable when the drug molecules and finite graphene sheets become comparable in sizes. The boundaries of finite sized graphene sheets restrict the movement of drug molecules. The double-side loading often slows down the diffusion of drug molecules compared with the single-side loading. The drug molecules bind more strongly with GO-PEG than with pristine graphene sheets, demonstrating the advantages of functionalization in improving the stability and biocompatibility of graphene-based DDS.
Style APA, Harvard, Vancouver, ISO itp.
8

Jana, Susmita, Arka Bandyopadhyay, Sujoy Datta, Debaprem Bhattacharya, and Debnarayan Jana. "Emerging properties of carbon based 2D material beyond graphene." Journal of Physics: Condensed Matter 34, no. 5 (2021): 053001. http://dx.doi.org/10.1088/1361-648x/ac3075.

Pełny tekst źródła
Streszczenie:
Abstract Graphene turns out to be the pioneering material for setting up boulevard to a new zoo of recently proposed carbon based novel two dimensional (2D) analogues. It is evident that their electronic, optical and other related properties are utterly different from that of graphene because of the distinct intriguing morphology. For instance, the revolutionary emergence of Dirac cones in graphene is particularly hard to find in most of the other 2D materials. As a consequence the crystal symmetries indeed act as a major role for predicting electronic band structure. Since tight binding calculations have become an indispensable tool in electronic band structure calculation, we indicate the implication of such method in graphene’s allotropes beyond hexagonal symmetry. It is to be noted that some of these graphene allotropes successfully overcome the inherent drawback of the zero band gap nature of graphene. As a result, these 2D nanomaterials exhibit great potential in a broad spectrum of applications, viz nanoelectronics, nanooptics, gas sensors, gas storages, catalysis, and other specific applications. The miniaturization of high performance graphene allotrope based gas sensors to microscopic or even nanosized range has also been critically discussed. In addition, various optical properties like the dielectric functions, optical conductivity, electron energy loss spectra reveal that these systems can be used in opto-electronic devices. Nonetheless, the honeycomb lattice of graphene is not superconducting. However, it is proposed that the tetragonal form of graphene can be intruded to form new hybrid 2D materials to achieve novel superconducting device at attainable conditions. These dynamic experimental prospects demand further functionalization of these systems to enhance the efficiency and the field of multifunctionality. This topical review aims to highlight the latest advances in carbon based 2D materials beyond graphene from the basic theoretical as well as future application perspectives.
Style APA, Harvard, Vancouver, ISO itp.
9

Koppens, F. H. L., T. Mueller, Ph Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini. "Photodetectors based on graphene, other two-dimensional materials and hybrid systems." Nature Nanotechnology 9, no. 10 (2014): 780–93. http://dx.doi.org/10.1038/nnano.2014.215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Si, Wei, Chang Chen, Gensheng Wu, et al. "High Efficient Seawater Desalination Based on Parallel Nanopore Systems." Nano 16, no. 07 (2021): 2150077. http://dx.doi.org/10.1142/s1793292021500776.

Pełny tekst źródła
Streszczenie:
Graphene is one of the most attractive two-dimensional materials that can be used for efficient desalination due to its ideal physical properties and high performance in ion selectivity and salt rejection. Here, in this paper, molecular dynamics simulations were applied to investigate the possibility of using a parallel nanopore system to pump ions so that the ions of both cation and anion species in the middle compartment could be evacuated at an extremely rapid rate. By building hexagonal parallel single-layer graphene films with spacing of 3.0 nm and changing the pore numbers and surface charge densities of the nanopores, the efficiency of desalination could be well controlled. It is found that the ion concentration decreases exponentially with time. The more the number of nanopore is, the stronger the surface charge density of nanopore is, the evacuation of ions in the middle compartment is more obvious, offering a new means for controlling the desalination efficiency. The simulations performed here provide theoretical insights for designing and fabricating high efficient and less energy consumption graphene desalination devices in the future.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii