Artykuły w czasopismach na temat „Graph and Multi-view Memory Attention”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graph and Multi-view Memory Attention”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ai, Bing, Yibing Wang, Liang Ji, et al. "A graph neural network fused with multi-head attention for text classification." Journal of Physics: Conference Series 2132, no. 1 (2021): 012032. http://dx.doi.org/10.1088/1742-6596/2132/1/012032.
Pełny tekst źródłaLiu, Di, Hui Xu, Jianzhong Wang, Yinghua Lu, Jun Kong, and Miao Qi. "Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition." Sensors 21, no. 20 (2021): 6761. http://dx.doi.org/10.3390/s21206761.
Pełny tekst źródłaFeng, Aosong, Irene Li, Yuang Jiang, and Rex Ying. "Diffuser: Efficient Transformers with Multi-Hop Attention Diffusion for Long Sequences." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 11 (2023): 12772–80. http://dx.doi.org/10.1609/aaai.v37i11.26502.
Pełny tekst źródłaLi, Mingxiao, and Marie-Francine Moens. "Dynamic Key-Value Memory Enhanced Multi-Step Graph Reasoning for Knowledge-Based Visual Question Answering." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 10 (2022): 10983–92. http://dx.doi.org/10.1609/aaai.v36i10.21346.
Pełny tekst źródłaJung, Tae-Won, Chi-Seo Jeong, In-Seon Kim, Min-Su Yu, Soon-Chul Kwon, and Kye-Dong Jung. "Graph Convolutional Network for 3D Object Pose Estimation in a Point Cloud." Sensors 22, no. 21 (2022): 8166. http://dx.doi.org/10.3390/s22218166.
Pełny tekst źródłaCui, Wei, Fei Wang, Xin He, et al. "Multi-Scale Semantic Segmentation and Spatial Relationship Recognition of Remote Sensing Images Based on an Attention Model." Remote Sensing 11, no. 9 (2019): 1044. http://dx.doi.org/10.3390/rs11091044.
Pełny tekst źródłaHou, Miaomiao, Xiaofeng Hu, Jitao Cai, Xinge Han, and Shuaiqi Yuan. "An Integrated Graph Model for Spatial–Temporal Urban Crime Prediction Based on Attention Mechanism." ISPRS International Journal of Geo-Information 11, no. 5 (2022): 294. http://dx.doi.org/10.3390/ijgi11050294.
Pełny tekst źródłaMi, Chunlei, Shifen Cheng, and Feng Lu. "Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks." ISPRS International Journal of Geo-Information 11, no. 3 (2022): 185. http://dx.doi.org/10.3390/ijgi11030185.
Pełny tekst źródłaKarimanzira, Divas, Linda Ritzau, and Katharina Emde. "Catchment Area Multi-Streamflow Multiple Hours Ahead Forecast Based on Deep Learning." Transactions on Machine Learning and Artificial Intelligence 10, no. 5 (2022): 15–29. http://dx.doi.org/10.14738/tmlai.105.13049.
Pełny tekst źródłaWang, Changhai, Jiaxi Ren, and Hui Liang. "MSGraph: Modeling multi-scale K-line sequences with graph attention network for profitable indices recommendation." Electronic Research Archive 31, no. 5 (2023): 2626–50. http://dx.doi.org/10.3934/era.2023133.
Pełny tekst źródłaMa, Xinwei, Yurui Yin, Yuchuan Jin, Mingjia He, and Minqing Zhu. "Short-Term Prediction of Bike-Sharing Demand Using Multi-Source Data: A Spatial-Temporal Graph Attentional LSTM Approach." Applied Sciences 12, no. 3 (2022): 1161. http://dx.doi.org/10.3390/app12031161.
Pełny tekst źródłaLin, Chun, Yijia Xu, Yong Fang, and Zhonglin Liu. "VulEye: A Novel Graph Neural Network Vulnerability Detection Approach for PHP Application." Applied Sciences 13, no. 2 (2023): 825. http://dx.doi.org/10.3390/app13020825.
Pełny tekst źródłaLiu, Daizong, Xiaoye Qu, Xing Di, Yu Cheng, Zichuan Xu, and Pan Zhou. "Memory-Guided Semantic Learning Network for Temporal Sentence Grounding." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (2022): 1665–73. http://dx.doi.org/10.1609/aaai.v36i2.20058.
Pełny tekst źródłaWu, Jie, Ian G. Harris, and Hongzhi Zhao. "GraphMemDialog: Optimizing End-to-End Task-Oriented Dialog Systems Using Graph Memory Networks." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 10 (2022): 11504–12. http://dx.doi.org/10.1609/aaai.v36i10.21403.
Pełny tekst źródłaLiu, Yuanxin, Delei Tian, and Bin Zheng. "Non-communicating Decentralized Multi-robot Collision Avoidance in Grid Graph Workspace based on Dueling Double Deep Q-Network." Journal of Physics: Conference Series 2456, no. 1 (2023): 012015. http://dx.doi.org/10.1088/1742-6596/2456/1/012015.
Pełny tekst źródłaSu, Guimin, Zimu Zeng, Andi Song, et al. "A General Framework for Reconstructing Full-Sample Continuous Vehicle Trajectories Using Roadside Sensing Data." Applied Sciences 13, no. 5 (2023): 3141. http://dx.doi.org/10.3390/app13053141.
Pełny tekst źródłaHu, Zhangfang, Libujie Chen, Yuan Luo, and Jingfan Zhou. "EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention." Applied Sciences 12, no. 21 (2022): 11255. http://dx.doi.org/10.3390/app122111255.
Pełny tekst źródłaJi, Zhanhao, Guojiang Shen, Juntao Wang, Mario Collotta, Zhi Liu, and Xiangjie Kong. "Multi-Vehicle Trajectory Tracking towards Digital Twin Intersections for Internet of Vehicles." Electronics 12, no. 2 (2023): 275. http://dx.doi.org/10.3390/electronics12020275.
Pełny tekst źródłaJin, Yanliang, Jinjin Ye, Liquan Shen, Yong Xiong, Lele Fan, and Qingfu Zang. "Hierarchical Attention Neural Network for Event Types to Improve Event Detection." Sensors 22, no. 11 (2022): 4202. http://dx.doi.org/10.3390/s22114202.
Pełny tekst źródłaTian, Qi, Kun Kuang, Furui Liu, and Baoxiang Wang. "Learning from Good Trajectories in Offline Multi-Agent Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 11672–80. http://dx.doi.org/10.1609/aaai.v37i10.26379.
Pełny tekst źródłaYang, Shuai, Yueqin Zhang, and Zehua Zhang. "Runoff Prediction Based on Dynamic Spatiotemporal Graph Neural Network." Water 15, no. 13 (2023): 2463. http://dx.doi.org/10.3390/w15132463.
Pełny tekst źródłaLi, Youru, Zhenfeng Zhu, Deqiang Kong, Meixiang Xu, and Yao Zhao. "Learning Heterogeneous Spatial-Temporal Representation for Bike-Sharing Demand Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1004–11. http://dx.doi.org/10.1609/aaai.v33i01.33011004.
Pełny tekst źródłaLiu, Lijuan, Mingxiao Wu, Rung-Ching Chen, Shunzhi Zhu, and Yan Wang. "A Hybrid Deep Learning Model for Multi-Station Classification and Passenger Flow Prediction." Applied Sciences 13, no. 5 (2023): 2899. http://dx.doi.org/10.3390/app13052899.
Pełny tekst źródłaChen, Yun, Chengwei Liang, Dengcheng Liu, et al. "Embedding-Graph-Neural-Network for Transient NOx Emissions Prediction." Energies 16, no. 1 (2022): 3. http://dx.doi.org/10.3390/en16010003.
Pełny tekst źródłaUddin, Md Azher, Joolekha Bibi Joolee, Young-Koo Lee, and Kyung-Ah Sohn. "A Novel Multi-Modal Network-Based Dynamic Scene Understanding." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 1 (2022): 1–19. http://dx.doi.org/10.1145/3462218.
Pełny tekst źródłaZhou, Hang, Junqing Yu, and Wei Yang. "Dual Memory Units with Uncertainty Regulation for Weakly Supervised Video Anomaly Detection." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 3 (2023): 3769–77. http://dx.doi.org/10.1609/aaai.v37i3.25489.
Pełny tekst źródłaZhang, Suqi, Xinxin Wang, Wenfeng Wang, Ningjing Zhang, Yunhao Fang, and Jianxin Li. "Recommendation model based on intention decomposition and heterogeneous information fusion." Mathematical Biosciences and Engineering 20, no. 9 (2023): 16401–20. http://dx.doi.org/10.3934/mbe.2023732.
Pełny tekst źródłaFang, Ziquan, Lu Pan, Lu Chen, Yuntao Du, and Yunjun Gao. "MDTP." Proceedings of the VLDB Endowment 14, no. 8 (2021): 1289–97. http://dx.doi.org/10.14778/3457390.3457394.
Pełny tekst źródłaXie, Yu, Yuanqiao Zhang, Maoguo Gong, Zedong Tang, and Chao Han. "MGAT: Multi-view Graph Attention Networks." Neural Networks 132 (December 2020): 180–89. http://dx.doi.org/10.1016/j.neunet.2020.08.021.
Pełny tekst źródłaYao, Kaixuan, Jiye Liang, Jianqing Liang, Ming Li, and Feilong Cao. "Multi-view graph convolutional networks with attention mechanism." Artificial Intelligence 307 (June 2022): 103708. http://dx.doi.org/10.1016/j.artint.2022.103708.
Pełny tekst źródłaChen, Lei, Jie Cao, Youquan Wang, Weichao Liang, and Guixiang Zhu. "Multi-view Graph Attention Network for Travel Recommendation." Expert Systems with Applications 191 (April 2022): 116234. http://dx.doi.org/10.1016/j.eswa.2021.116234.
Pełny tekst źródłaZhang, Pengyu, Yong Zhang, Jingcheng Wang, and Baocai Yin. "MVMA-GCN: Multi-view multi-layer attention graph convolutional networks." Engineering Applications of Artificial Intelligence 126 (November 2023): 106717. http://dx.doi.org/10.1016/j.engappai.2023.106717.
Pełny tekst źródłaPoologaindran, Anujan, Mike Hart, Tom Santarius, et al. "Longitudinal Connectome Analyses following Low-Grade Glioma Neurosurgery: Implications for Cognitive Rehabilitation." Neuro-Oncology 23, Supplement_4 (2021): iv8. http://dx.doi.org/10.1093/neuonc/noab195.015.
Pełny tekst źródłaTang, Chang, Xinwang Liu, Xinzhong Zhu, et al. "CGD: Multi-View Clustering via Cross-View Graph Diffusion." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5924–31. http://dx.doi.org/10.1609/aaai.v34i04.6052.
Pełny tekst źródłaZhu, Fujian, and Shaojie Dai. "Multi-view Attention Mechanism Learning for POI Recommendation." Journal of Physics: Conference Series 2258, no. 1 (2022): 012041. http://dx.doi.org/10.1088/1742-6596/2258/1/012041.
Pełny tekst źródłaZou, Yongqi, Wenjiang Feng, Juntao Zhang, and Jingfu Li. "Forecasting of Short-Term Load Using the MFF-SAM-GCN Model." Energies 15, no. 9 (2022): 3140. http://dx.doi.org/10.3390/en15093140.
Pełny tekst źródłaZou, Yongqi, Wenjiang Feng, Juntao Zhang, and Jingfu Li. "Forecasting of Short-Term Load Using the MFF-SAM-GCN Model." Energies 15, no. 9 (2022): 3140. http://dx.doi.org/10.3390/en15093140.
Pełny tekst źródłaWu, Fei, Changjiang Zheng, Chen Zhang, Junze Ma, and Kai Sun. "Multi-View Multi-Attention Graph Neural Network for Traffic Flow Forecasting." Applied Sciences 13, no. 2 (2023): 711. http://dx.doi.org/10.3390/app13020711.
Pełny tekst źródłaCui, Wanqiu, Junping Du, Dawei Wang, Feifei Kou, and Zhe Xue. "MVGAN: Multi-View Graph Attention Network for Social Event Detection." ACM Transactions on Intelligent Systems and Technology 12, no. 3 (2021): 1–24. http://dx.doi.org/10.1145/3447270.
Pełny tekst źródłaHuang, Zongmo, Yazhou Ren, Xiaorong Pu, Shudong Huang, Zenglin Xu, and Lifang He. "Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (2023): 7936–43. http://dx.doi.org/10.1609/aaai.v37i7.25960.
Pełny tekst źródłaWang, Li, Xin Wang, and Jiao Wang. "Rail Transit Prediction Based on Multi-View Graph Attention Networks." Journal of Advanced Transportation 2022 (July 6, 2022): 1–8. http://dx.doi.org/10.1155/2022/4672617.
Pełny tekst źródłaLing, Yawen, Jianpeng Chen, Yazhou Ren, et al. "Dual Label-Guided Graph Refinement for Multi-View Graph Clustering." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (2023): 8791–98. http://dx.doi.org/10.1609/aaai.v37i7.26057.
Pełny tekst źródłaLyu, Gengyu, Xiang Deng, Yanan Wu, and Songhe Feng. "Beyond Shared Subspace: A View-Specific Fusion for Multi-View Multi-Label Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (2022): 7647–54. http://dx.doi.org/10.1609/aaai.v36i7.20731.
Pełny tekst źródłaZhang, Pei, Siwei Wang, Jingtao Hu, et al. "Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering." Sensors 20, no. 20 (2020): 5755. http://dx.doi.org/10.3390/s20205755.
Pełny tekst źródłaShang, Chao, Qinqing Liu, Qianqian Tong, Jiangwen Sun, Minghu Song, and Jinbo Bi. "Multi-view spectral graph convolution with consistent edge attention for molecular modeling." Neurocomputing 445 (July 2021): 12–25. http://dx.doi.org/10.1016/j.neucom.2021.02.025.
Pełny tekst źródłaYu, Jinshi, Qi Duan, Haonan Huang, Shude He, and Tao Zou. "Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion." Mathematics 11, no. 3 (2023): 652. http://dx.doi.org/10.3390/math11030652.
Pełny tekst źródłaHuang, Yanquan, Haoliang Yuan, and Loi Lei Lai. "Latent multi-view semi-supervised classification by using graph learning." International Journal of Wavelets, Multiresolution and Information Processing 18, no. 05 (2020): 2050039. http://dx.doi.org/10.1142/s0219691320500393.
Pełny tekst źródłaAlothali, Eiman, Motamen Salih, Kadhim Hayawi, and Hany Alashwal. "Bot-MGAT: A Transfer Learning Model Based on a Multi-View Graph Attention Network to Detect Social Bots." Applied Sciences 12, no. 16 (2022): 8117. http://dx.doi.org/10.3390/app12168117.
Pełny tekst źródłaZeng, Hui, Tianmeng Zhao, Ruting Cheng, Fuzhou Wang, and Jiwei Liu. "Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition." IEEE Access 9 (2021): 33323–35. http://dx.doi.org/10.1109/access.2021.3059853.
Pełny tekst źródłaZhu, Jiangqiang, Kai Li, Jinjia Peng, and Jing Qi. "Self-Supervised Graph Attention Collaborative Filtering for Recommendation." Electronics 12, no. 4 (2023): 793. http://dx.doi.org/10.3390/electronics12040793.
Pełny tekst źródła