Artykuły w czasopismach na temat „Graph and Multi-view Memory Attention”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Graph and Multi-view Memory Attention”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ai, Bing, Yibing Wang, Liang Ji, Jia Yi, Ting Wang, Wentao Liu i Hui Zhou. "A graph neural network fused with multi-head attention for text classification". Journal of Physics: Conference Series 2132, nr 1 (1.12.2021): 012032. http://dx.doi.org/10.1088/1742-6596/2132/1/012032.
Pełny tekst źródłaLiu, Di, Hui Xu, Jianzhong Wang, Yinghua Lu, Jun Kong i Miao Qi. "Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition". Sensors 21, nr 20 (12.10.2021): 6761. http://dx.doi.org/10.3390/s21206761.
Pełny tekst źródłaFeng, Aosong, Irene Li, Yuang Jiang i Rex Ying. "Diffuser: Efficient Transformers with Multi-Hop Attention Diffusion for Long Sequences". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 11 (26.06.2023): 12772–80. http://dx.doi.org/10.1609/aaai.v37i11.26502.
Pełny tekst źródłaLi, Mingxiao, i Marie-Francine Moens. "Dynamic Key-Value Memory Enhanced Multi-Step Graph Reasoning for Knowledge-Based Visual Question Answering". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 10 (28.06.2022): 10983–92. http://dx.doi.org/10.1609/aaai.v36i10.21346.
Pełny tekst źródłaJung, Tae-Won, Chi-Seo Jeong, In-Seon Kim, Min-Su Yu, Soon-Chul Kwon i Kye-Dong Jung. "Graph Convolutional Network for 3D Object Pose Estimation in a Point Cloud". Sensors 22, nr 21 (25.10.2022): 8166. http://dx.doi.org/10.3390/s22218166.
Pełny tekst źródłaCui, Wei, Fei Wang, Xin He, Dongyou Zhang, Xuxiang Xu, Meng Yao, Ziwei Wang i Jiejun Huang. "Multi-Scale Semantic Segmentation and Spatial Relationship Recognition of Remote Sensing Images Based on an Attention Model". Remote Sensing 11, nr 9 (2.05.2019): 1044. http://dx.doi.org/10.3390/rs11091044.
Pełny tekst źródłaHou, Miaomiao, Xiaofeng Hu, Jitao Cai, Xinge Han i Shuaiqi Yuan. "An Integrated Graph Model for Spatial–Temporal Urban Crime Prediction Based on Attention Mechanism". ISPRS International Journal of Geo-Information 11, nr 5 (30.04.2022): 294. http://dx.doi.org/10.3390/ijgi11050294.
Pełny tekst źródłaMi, Chunlei, Shifen Cheng i Feng Lu. "Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks". ISPRS International Journal of Geo-Information 11, nr 3 (9.03.2022): 185. http://dx.doi.org/10.3390/ijgi11030185.
Pełny tekst źródłaKarimanzira, Divas, Linda Ritzau i Katharina Emde. "Catchment Area Multi-Streamflow Multiple Hours Ahead Forecast Based on Deep Learning". Transactions on Machine Learning and Artificial Intelligence 10, nr 5 (29.09.2022): 15–29. http://dx.doi.org/10.14738/tmlai.105.13049.
Pełny tekst źródłaWang, Changhai, Jiaxi Ren i Hui Liang. "MSGraph: Modeling multi-scale K-line sequences with graph attention network for profitable indices recommendation". Electronic Research Archive 31, nr 5 (2023): 2626–50. http://dx.doi.org/10.3934/era.2023133.
Pełny tekst źródłaMa, Xinwei, Yurui Yin, Yuchuan Jin, Mingjia He i Minqing Zhu. "Short-Term Prediction of Bike-Sharing Demand Using Multi-Source Data: A Spatial-Temporal Graph Attentional LSTM Approach". Applied Sciences 12, nr 3 (23.01.2022): 1161. http://dx.doi.org/10.3390/app12031161.
Pełny tekst źródłaLin, Chun, Yijia Xu, Yong Fang i Zhonglin Liu. "VulEye: A Novel Graph Neural Network Vulnerability Detection Approach for PHP Application". Applied Sciences 13, nr 2 (6.01.2023): 825. http://dx.doi.org/10.3390/app13020825.
Pełny tekst źródłaLiu, Daizong, Xiaoye Qu, Xing Di, Yu Cheng, Zichuan Xu i Pan Zhou. "Memory-Guided Semantic Learning Network for Temporal Sentence Grounding". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 2 (28.06.2022): 1665–73. http://dx.doi.org/10.1609/aaai.v36i2.20058.
Pełny tekst źródłaWu, Jie, Ian G. Harris i Hongzhi Zhao. "GraphMemDialog: Optimizing End-to-End Task-Oriented Dialog Systems Using Graph Memory Networks". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 10 (28.06.2022): 11504–12. http://dx.doi.org/10.1609/aaai.v36i10.21403.
Pełny tekst źródłaLiu, Yuanxin, Delei Tian i Bin Zheng. "Non-communicating Decentralized Multi-robot Collision Avoidance in Grid Graph Workspace based on Dueling Double Deep Q-Network". Journal of Physics: Conference Series 2456, nr 1 (1.03.2023): 012015. http://dx.doi.org/10.1088/1742-6596/2456/1/012015.
Pełny tekst źródłaSu, Guimin, Zimu Zeng, Andi Song, Cong Zhao, Feng Shen, Liangxiao Yuan i Xinghua Li. "A General Framework for Reconstructing Full-Sample Continuous Vehicle Trajectories Using Roadside Sensing Data". Applied Sciences 13, nr 5 (28.02.2023): 3141. http://dx.doi.org/10.3390/app13053141.
Pełny tekst źródłaHu, Zhangfang, Libujie Chen, Yuan Luo i Jingfan Zhou. "EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention". Applied Sciences 12, nr 21 (6.11.2022): 11255. http://dx.doi.org/10.3390/app122111255.
Pełny tekst źródłaJi, Zhanhao, Guojiang Shen, Juntao Wang, Mario Collotta, Zhi Liu i Xiangjie Kong. "Multi-Vehicle Trajectory Tracking towards Digital Twin Intersections for Internet of Vehicles". Electronics 12, nr 2 (5.01.2023): 275. http://dx.doi.org/10.3390/electronics12020275.
Pełny tekst źródłaJin, Yanliang, Jinjin Ye, Liquan Shen, Yong Xiong, Lele Fan i Qingfu Zang. "Hierarchical Attention Neural Network for Event Types to Improve Event Detection". Sensors 22, nr 11 (31.05.2022): 4202. http://dx.doi.org/10.3390/s22114202.
Pełny tekst źródłaTian, Qi, Kun Kuang, Furui Liu i Baoxiang Wang. "Learning from Good Trajectories in Offline Multi-Agent Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 10 (26.06.2023): 11672–80. http://dx.doi.org/10.1609/aaai.v37i10.26379.
Pełny tekst źródłaYang, Shuai, Yueqin Zhang i Zehua Zhang. "Runoff Prediction Based on Dynamic Spatiotemporal Graph Neural Network". Water 15, nr 13 (5.07.2023): 2463. http://dx.doi.org/10.3390/w15132463.
Pełny tekst źródłaLi, Youru, Zhenfeng Zhu, Deqiang Kong, Meixiang Xu i Yao Zhao. "Learning Heterogeneous Spatial-Temporal Representation for Bike-Sharing Demand Prediction". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 1004–11. http://dx.doi.org/10.1609/aaai.v33i01.33011004.
Pełny tekst źródłaLiu, Lijuan, Mingxiao Wu, Rung-Ching Chen, Shunzhi Zhu i Yan Wang. "A Hybrid Deep Learning Model for Multi-Station Classification and Passenger Flow Prediction". Applied Sciences 13, nr 5 (23.02.2023): 2899. http://dx.doi.org/10.3390/app13052899.
Pełny tekst źródłaChen, Yun, Chengwei Liang, Dengcheng Liu, Qingren Niu, Xinke Miao, Guangyu Dong, Liguang Li, Shanbin Liao, Xiaoci Ni i Xiaobo Huang. "Embedding-Graph-Neural-Network for Transient NOx Emissions Prediction". Energies 16, nr 1 (20.12.2022): 3. http://dx.doi.org/10.3390/en16010003.
Pełny tekst źródłaUddin, Md Azher, Joolekha Bibi Joolee, Young-Koo Lee i Kyung-Ah Sohn. "A Novel Multi-Modal Network-Based Dynamic Scene Understanding". ACM Transactions on Multimedia Computing, Communications, and Applications 18, nr 1 (31.01.2022): 1–19. http://dx.doi.org/10.1145/3462218.
Pełny tekst źródłaZhou, Hang, Junqing Yu i Wei Yang. "Dual Memory Units with Uncertainty Regulation for Weakly Supervised Video Anomaly Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 3 (26.06.2023): 3769–77. http://dx.doi.org/10.1609/aaai.v37i3.25489.
Pełny tekst źródłaZhang, Suqi, Xinxin Wang, Wenfeng Wang, Ningjing Zhang, Yunhao Fang i Jianxin Li. "Recommendation model based on intention decomposition and heterogeneous information fusion". Mathematical Biosciences and Engineering 20, nr 9 (2023): 16401–20. http://dx.doi.org/10.3934/mbe.2023732.
Pełny tekst źródłaFang, Ziquan, Lu Pan, Lu Chen, Yuntao Du i Yunjun Gao. "MDTP". Proceedings of the VLDB Endowment 14, nr 8 (kwiecień 2021): 1289–97. http://dx.doi.org/10.14778/3457390.3457394.
Pełny tekst źródłaXie, Yu, Yuanqiao Zhang, Maoguo Gong, Zedong Tang i Chao Han. "MGAT: Multi-view Graph Attention Networks". Neural Networks 132 (grudzień 2020): 180–89. http://dx.doi.org/10.1016/j.neunet.2020.08.021.
Pełny tekst źródłaYao, Kaixuan, Jiye Liang, Jianqing Liang, Ming Li i Feilong Cao. "Multi-view graph convolutional networks with attention mechanism". Artificial Intelligence 307 (czerwiec 2022): 103708. http://dx.doi.org/10.1016/j.artint.2022.103708.
Pełny tekst źródłaChen, Lei, Jie Cao, Youquan Wang, Weichao Liang i Guixiang Zhu. "Multi-view Graph Attention Network for Travel Recommendation". Expert Systems with Applications 191 (kwiecień 2022): 116234. http://dx.doi.org/10.1016/j.eswa.2021.116234.
Pełny tekst źródłaZhang, Pengyu, Yong Zhang, Jingcheng Wang i Baocai Yin. "MVMA-GCN: Multi-view multi-layer attention graph convolutional networks". Engineering Applications of Artificial Intelligence 126 (listopad 2023): 106717. http://dx.doi.org/10.1016/j.engappai.2023.106717.
Pełny tekst źródłaPoologaindran, Anujan, Mike Hart, Tom Santarius, Stephen Price, Rohit Sinha, Mike Sughrue, Yaara Erez, Rafael Romero-Garcia i John Suckling. "Longitudinal Connectome Analyses following Low-Grade Glioma Neurosurgery: Implications for Cognitive Rehabilitation". Neuro-Oncology 23, Supplement_4 (1.10.2021): iv8. http://dx.doi.org/10.1093/neuonc/noab195.015.
Pełny tekst źródłaTang, Chang, Xinwang Liu, Xinzhong Zhu, En Zhu, Zhigang Luo, Lizhe Wang i Wen Gao. "CGD: Multi-View Clustering via Cross-View Graph Diffusion". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5924–31. http://dx.doi.org/10.1609/aaai.v34i04.6052.
Pełny tekst źródłaZhu, Fujian, i Shaojie Dai. "Multi-view Attention Mechanism Learning for POI Recommendation". Journal of Physics: Conference Series 2258, nr 1 (1.04.2022): 012041. http://dx.doi.org/10.1088/1742-6596/2258/1/012041.
Pełny tekst źródłaZou, Yongqi, Wenjiang Feng, Juntao Zhang i Jingfu Li. "Forecasting of Short-Term Load Using the MFF-SAM-GCN Model". Energies 15, nr 9 (25.04.2022): 3140. http://dx.doi.org/10.3390/en15093140.
Pełny tekst źródłaZou, Yongqi, Wenjiang Feng, Juntao Zhang i Jingfu Li. "Forecasting of Short-Term Load Using the MFF-SAM-GCN Model". Energies 15, nr 9 (25.04.2022): 3140. http://dx.doi.org/10.3390/en15093140.
Pełny tekst źródłaWu, Fei, Changjiang Zheng, Chen Zhang, Junze Ma i Kai Sun. "Multi-View Multi-Attention Graph Neural Network for Traffic Flow Forecasting". Applied Sciences 13, nr 2 (4.01.2023): 711. http://dx.doi.org/10.3390/app13020711.
Pełny tekst źródłaCui, Wanqiu, Junping Du, Dawei Wang, Feifei Kou i Zhe Xue. "MVGAN: Multi-View Graph Attention Network for Social Event Detection". ACM Transactions on Intelligent Systems and Technology 12, nr 3 (19.07.2021): 1–24. http://dx.doi.org/10.1145/3447270.
Pełny tekst źródłaHuang, Zongmo, Yazhou Ren, Xiaorong Pu, Shudong Huang, Zenglin Xu i Lifang He. "Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 7 (26.06.2023): 7936–43. http://dx.doi.org/10.1609/aaai.v37i7.25960.
Pełny tekst źródłaWang, Li, Xin Wang i Jiao Wang. "Rail Transit Prediction Based on Multi-View Graph Attention Networks". Journal of Advanced Transportation 2022 (6.07.2022): 1–8. http://dx.doi.org/10.1155/2022/4672617.
Pełny tekst źródłaLing, Yawen, Jianpeng Chen, Yazhou Ren, Xiaorong Pu, Jie Xu, Xiaofeng Zhu i Lifang He. "Dual Label-Guided Graph Refinement for Multi-View Graph Clustering". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 7 (26.06.2023): 8791–98. http://dx.doi.org/10.1609/aaai.v37i7.26057.
Pełny tekst źródłaLyu, Gengyu, Xiang Deng, Yanan Wu i Songhe Feng. "Beyond Shared Subspace: A View-Specific Fusion for Multi-View Multi-Label Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 7 (28.06.2022): 7647–54. http://dx.doi.org/10.1609/aaai.v36i7.20731.
Pełny tekst źródłaZhang, Pei, Siwei Wang, Jingtao Hu, Zhen Cheng, Xifeng Guo, En Zhu i Zhiping Cai. "Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering". Sensors 20, nr 20 (10.10.2020): 5755. http://dx.doi.org/10.3390/s20205755.
Pełny tekst źródłaShang, Chao, Qinqing Liu, Qianqian Tong, Jiangwen Sun, Minghu Song i Jinbo Bi. "Multi-view spectral graph convolution with consistent edge attention for molecular modeling". Neurocomputing 445 (lipiec 2021): 12–25. http://dx.doi.org/10.1016/j.neucom.2021.02.025.
Pełny tekst źródłaYu, Jinshi, Qi Duan, Haonan Huang, Shude He i Tao Zou. "Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion". Mathematics 11, nr 3 (28.01.2023): 652. http://dx.doi.org/10.3390/math11030652.
Pełny tekst źródłaHuang, Yanquan, Haoliang Yuan i Loi Lei Lai. "Latent multi-view semi-supervised classification by using graph learning". International Journal of Wavelets, Multiresolution and Information Processing 18, nr 05 (20.06.2020): 2050039. http://dx.doi.org/10.1142/s0219691320500393.
Pełny tekst źródłaAlothali, Eiman, Motamen Salih, Kadhim Hayawi i Hany Alashwal. "Bot-MGAT: A Transfer Learning Model Based on a Multi-View Graph Attention Network to Detect Social Bots". Applied Sciences 12, nr 16 (13.08.2022): 8117. http://dx.doi.org/10.3390/app12168117.
Pełny tekst źródłaZeng, Hui, Tianmeng Zhao, Ruting Cheng, Fuzhou Wang i Jiwei Liu. "Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition". IEEE Access 9 (2021): 33323–35. http://dx.doi.org/10.1109/access.2021.3059853.
Pełny tekst źródłaZhu, Jiangqiang, Kai Li, Jinjia Peng i Jing Qi. "Self-Supervised Graph Attention Collaborative Filtering for Recommendation". Electronics 12, nr 4 (5.02.2023): 793. http://dx.doi.org/10.3390/electronics12040793.
Pełny tekst źródła