Artykuły w czasopismach na temat „Gram-negative inner membrane”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Gram-negative inner membrane”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Powers, Matthew J., i M. Stephen Trent. "Intermembrane transport: Glycerophospholipid homeostasis of the Gram-negative cell envelope". Proceedings of the National Academy of Sciences 116, nr 35 (16.08.2019): 17147–55. http://dx.doi.org/10.1073/pnas.1902026116.
Pełny tekst źródłaOrlando, Benjamin, Yanyan Li i Maofu Liao. "Snapshots of Endotoxin Extraction from the Gram-negative Inner Membrane". Microscopy and Microanalysis 26, S2 (30.07.2020): 2520. http://dx.doi.org/10.1017/s1431927620021893.
Pełny tekst źródłaEpand, Raquel F., Jake E. Pollard, Jonathan O. Wright, Paul B. Savage i Richard M. Epand. "Depolarization, Bacterial Membrane Composition, and the Antimicrobial Action of Ceragenins". Antimicrobial Agents and Chemotherapy 54, nr 9 (28.06.2010): 3708–13. http://dx.doi.org/10.1128/aac.00380-10.
Pełny tekst źródłaSutterlin, Holly A., Handuo Shi, Kerrie L. May, Amanda Miguel, Somya Khare, Kerwyn Casey Huang i Thomas J. Silhavy. "Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway". Proceedings of the National Academy of Sciences 113, nr 11 (29.02.2016): E1565—E1574. http://dx.doi.org/10.1073/pnas.1601375113.
Pełny tekst źródłaLi, Xiangyuan, Lei Fu, Shan Zhang, Yipeng Wang i Lianghui Gao. "How Alligator Immune Peptides Kill Gram-Negative Bacteria: A Lipid-Scrambling, Squeezing, and Extracting Mechanism Revealed by Theoretical Simulations". International Journal of Molecular Sciences 24, nr 13 (30.06.2023): 10962. http://dx.doi.org/10.3390/ijms241310962.
Pełny tekst źródłaPérez-Cruz, Carla, Lidia Delgado, Carmen López-Iglesias i Elena Mercade. "Outer-Inner Membrane Vesicles Naturally Secreted by Gram-Negative Pathogenic Bacteria". PLOS ONE 10, nr 1 (12.01.2015): e0116896. http://dx.doi.org/10.1371/journal.pone.0116896.
Pełny tekst źródłaRaina, Satish. "Lipopolysaccharides: Regulated Biosynthesis and Structural Diversity". International Journal of Molecular Sciences 24, nr 8 (19.04.2023): 7498. http://dx.doi.org/10.3390/ijms24087498.
Pełny tekst źródłaMakowski, Marcin, Mário R. Felício, Isabel C. M. Fensterseifer, Octávio L. Franco, Nuno C. Santos i Sónia Gonçalves. "EcDBS1R4, an Antimicrobial Peptide Effective against Escherichia coli with In Vitro Fusogenic Ability". International Journal of Molecular Sciences 21, nr 23 (30.11.2020): 9104. http://dx.doi.org/10.3390/ijms21239104.
Pełny tekst źródłaBanack, Trevor, Peter D. Kim i William Firshein. "TrfA-Dependent Inner Membrane-Associated Plasmid RK2 DNA Synthesis and Association of TrfA with Membranes of Different Gram-Negative Hosts". Journal of Bacteriology 182, nr 16 (15.08.2000): 4380–83. http://dx.doi.org/10.1128/jb.182.16.4380-4383.2000.
Pełny tekst źródłaClausell, Adrià, Maria Garcia-Subirats, Montserrat Pujol, M. Antonia Busquets, Francesc Rabanal i Yolanda Cajal. "Gram-Negative Outer and Inner Membrane Models: Insertion of Cyclic Cationic Lipopeptides". Journal of Physical Chemistry B 111, nr 3 (styczeń 2007): 551–63. http://dx.doi.org/10.1021/jp064757+.
Pełny tekst źródłaJordan, L. D., Y. Zhou, C. R. Smallwood, Y. Lill, K. Ritchie, W. T. Yip, S. M. Newton i P. E. Klebba. "Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane". Proceedings of the National Academy of Sciences 110, nr 28 (24.06.2013): 11553–58. http://dx.doi.org/10.1073/pnas.1304243110.
Pełny tekst źródłaMarx, Lisa, Enrico Semeraro, Karl Lohner i Georg Pabst. "Structural Properties of Inner and Outer Membrane Mimics of Gram-Negative Bacteria". Biophysical Journal 116, nr 3 (luty 2019): 87a. http://dx.doi.org/10.1016/j.bpj.2018.11.512.
Pełny tekst źródłaClifton, Luke A., Maximilian W. A. Skoda, Emma L. Daulton, Arwel V. Hughes, Anton P. Le Brun, Jeremy H. Lakey i Stephen A. Holt. "Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic". Journal of The Royal Society Interface 10, nr 89 (6.12.2013): 20130810. http://dx.doi.org/10.1098/rsif.2013.0810.
Pełny tekst źródłaCochrane, Stephen A., Brandon Findlay, Alireza Bakhtiary, Jeella Z. Acedo, Eva M. Rodriguez-Lopez, Pascal Mercier i John C. Vederas. "Antimicrobial lipopeptide tridecaptin A1selectively binds to Gram-negative lipid II". Proceedings of the National Academy of Sciences 113, nr 41 (29.09.2016): 11561–66. http://dx.doi.org/10.1073/pnas.1608623113.
Pełny tekst źródłaDombach, Jamie L., Joaquin L. J. Quintana, Toni A. Nagy, Chun Wan, Amy L. Crooks, Haijia Yu, Chih-Chia Su, Edward W. Yu, Jingshi Shen i Corrella S. Detweiler. "A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids". PLOS Pathogens 16, nr 12 (8.12.2020): e1009119. http://dx.doi.org/10.1371/journal.ppat.1009119.
Pełny tekst źródłaVetterli, Stefan U., Katja Zerbe, Maik Müller, Matthias Urfer, Milon Mondal, Shuang-Yan Wang, Kerstin Moehle i in. "Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport inEscherichia coli". Science Advances 4, nr 11 (listopad 2018): eaau2634. http://dx.doi.org/10.1126/sciadv.aau2634.
Pełny tekst źródłaZaknoon, Fadia, Keren Goldberg, Hadar Sarig, Raquel F. Epand, Richard M. Epand i Amram Mor. "Antibacterial Properties of an Oligo-Acyl-Lysyl Hexamer Targeting Gram-Negative Species". Antimicrobial Agents and Chemotherapy 56, nr 9 (2.07.2012): 4827–32. http://dx.doi.org/10.1128/aac.00511-12.
Pełny tekst źródłaWeerakoon, Dhanushka, Jan K. Marzinek, Peter J. Bond, Conrado Pedebos i Syma Khalid. "Interactions of polymyxin B1 with the gram-negative inner membrane: A simulation study". Biophysical Journal 122, nr 3 (luty 2023): 371a. http://dx.doi.org/10.1016/j.bpj.2022.11.2043.
Pełny tekst źródłaDong, Haohao, Xiaodi Tang, Zhengyu Zhang i Changjiang Dong. "Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1862, nr 11 (listopad 2017): 1461–67. http://dx.doi.org/10.1016/j.bbalip.2017.08.003.
Pełny tekst źródłaMcLeod, Sarah M., Paul R. Fleming, Kathleen MacCormack, Robert E. McLaughlin, James D. Whiteaker, Shin-ichiro Narita, Makiko Mori, Hajime Tokuda i Alita A. Miller. "Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening". Journal of Bacteriology 197, nr 6 (12.01.2015): 1075–82. http://dx.doi.org/10.1128/jb.02352-14.
Pełny tekst źródłaKlebba, Phillip E. "ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition". Journal of Bacteriology 198, nr 7 (19.01.2016): 1013–21. http://dx.doi.org/10.1128/jb.00823-15.
Pełny tekst źródłaPy, Béatrice, Laurent Loiseau i Frédéric Barras. "An inner membrane platform in the type II secretion machinery of Gram‐negative bacteria". EMBO reports 2, nr 3 (marzec 2001): 244–48. http://dx.doi.org/10.1093/embo-reports/kve042.
Pełny tekst źródłaSimpson, Brent W., Janine M. May, David J. Sherman, Daniel Kahne i Natividad Ruiz. "Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane". Philosophical Transactions of the Royal Society B: Biological Sciences 370, nr 1679 (5.10.2015): 20150029. http://dx.doi.org/10.1098/rstb.2015.0029.
Pełny tekst źródłaJosts, Inokentijs, Katharina Veith, Vincent Normant, Isabelle J. Schalk i Henning Tidow. "Structural insights into a novel family of integral membrane siderophore reductases". Proceedings of the National Academy of Sciences 118, nr 34 (20.08.2021): e2101952118. http://dx.doi.org/10.1073/pnas.2101952118.
Pełny tekst źródłaPérez-Cruz, Carla, Ornella Carrión, Lidia Delgado, Gemma Martinez, Carmen López-Iglesias i Elena Mercade. "New Type of Outer Membrane Vesicle Produced by the Gram-Negative Bacterium Shewanella vesiculosa M7T: Implications for DNA Content". Applied and Environmental Microbiology 79, nr 6 (11.01.2013): 1874–81. http://dx.doi.org/10.1128/aem.03657-12.
Pełny tekst źródłaDouglass, Martin V., François Cléon i M. Stephen Trent. "Cardiolipin aids in lipopolysaccharide transport to the gram-negative outer membrane". Proceedings of the National Academy of Sciences 118, nr 15 (8.04.2021): e2018329118. http://dx.doi.org/10.1073/pnas.2018329118.
Pełny tekst źródłaHuntley, Jason F., Patrick G. Conley, Kayla E. Hagman i Michael V. Norgard. "Characterization of Francisella tularensis Outer Membrane Proteins". Journal of Bacteriology 189, nr 2 (17.11.2006): 561–74. http://dx.doi.org/10.1128/jb.01505-06.
Pełny tekst źródłaMaktabi, Sepehr, Jeffrey W. Schertzer i Paul R. Chiarot. "Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition". Soft Matter 15, nr 19 (2019): 3938–48. http://dx.doi.org/10.1039/c9sm00223e.
Pełny tekst źródłaKim, Jin-Young, Seong-Cheol Park, Moon-Young Yoon, Kyung-Soo Hahm i Yoonkyung Park. "C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria". Amino Acids 40, nr 1 (30.05.2010): 183–95. http://dx.doi.org/10.1007/s00726-010-0632-1.
Pełny tekst źródłaMa, Miao, Margaux Lustig, Michèle Salem, Dominique Mengin-Lecreulx, Gilles Phan i Isabelle Broutin. "MexAB-OprM Efflux Pump Interaction with the Peptidoglycan of Escherichia coli and Pseudomonas aeruginosa". International Journal of Molecular Sciences 22, nr 10 (18.05.2021): 5328. http://dx.doi.org/10.3390/ijms22105328.
Pełny tekst źródłaBerger, Carolin, Guillaume P. Robin, Ulla Bonas i Ralf Koebnik. "Membrane topology of conserved components of the type III secretion system from the plant pathogen Xanthomonas campestris pv. vesicatoria". Microbiology 156, nr 7 (1.07.2010): 1963–74. http://dx.doi.org/10.1099/mic.0.039248-0.
Pełny tekst źródłaZhang, Ge, Vadim Baidin, Karanbir S. Pahil, Eileen Moison, David Tomasek, Nitya S. Ramadoss, Arnab K. Chatterjee i in. "Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors". Proceedings of the National Academy of Sciences 115, nr 26 (7.05.2018): 6834–39. http://dx.doi.org/10.1073/pnas.1804670115.
Pełny tekst źródłaLi, Shiqi, Ruohua Ren, Letian Lyu, Jiangning Song, Yajun Wang, Tsung-Wu Lin, Anton Le Brun, Hsien-Yi Hsu i Hsin-Hui Shen. "Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials". Membranes 12, nr 10 (20.09.2022): 906. http://dx.doi.org/10.3390/membranes12100906.
Pełny tekst źródłaSegovia, Roser, Judith Solé, Ana Maria Marqués, Yolanda Cajal i Francesc Rabanal. "Unveiling the Membrane and Cell Wall Action of Antimicrobial Cyclic Lipopeptides: Modulation of the Spectrum of Activity". Pharmaceutics 13, nr 12 (17.12.2021): 2180. http://dx.doi.org/10.3390/pharmaceutics13122180.
Pełny tekst źródłaNguyen, Hang Thi, Lisa A. O’Donovan, Henrietta Venter, Cecilia C. Russell, Adam McCluskey, Stephen W. Page, Darren J. Trott i Abiodun D. Ogunniyi. "Comparison of Two Transmission Electron Microscopy Methods to Visualize Drug-Induced Alterations of Gram-Negative Bacterial Morphology". Antibiotics 10, nr 3 (17.03.2021): 307. http://dx.doi.org/10.3390/antibiotics10030307.
Pełny tekst źródłaXu, Yongbin, Arne Moeller, So-Young Jun, Minho Le, Bo-Young Yoon, Jin-Sik Kim, Kangseok Lee i Nam-Chul Ha. "Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria". Journal of Biological Chemistry 287, nr 15 (3.02.2012): 11740–50. http://dx.doi.org/10.1074/jbc.m111.329375.
Pełny tekst źródłaGawarzewski, Iris, Sander H. J. Smits, Lutz Schmitt i Joachim Jose. "Structural comparison of the transport units of type V secretion systems". Biological Chemistry 394, nr 11 (1.11.2013): 1385–98. http://dx.doi.org/10.1515/hsz-2013-0162.
Pełny tekst źródłaSamantarrai, Devyani, Annapoorni Lakshman Sagar, Ramurthy Gudla i Dayananda Siddavattam. "TonB-Dependent Transporters in Sphingomonads: Unraveling Their Distribution and Function in Environmental Adaptation". Microorganisms 8, nr 3 (3.03.2020): 359. http://dx.doi.org/10.3390/microorganisms8030359.
Pełny tekst źródłaBootsma, Hester J., Piet C. Aerts, George Posthuma, Theo Harmsen, Jan Verhoef, Hans van Dijk i Frits R. Mooi. "Moraxella (Branhamella)catarrhalis BRO β-Lactamase: a Lipoprotein of Gram-Positive Origin?" Journal of Bacteriology 181, nr 16 (15.08.1999): 5090–93. http://dx.doi.org/10.1128/jb.181.16.5090-5093.1999.
Pełny tekst źródłaSperandeo, Paola, Rachele Cescutti, Riccardo Villa, Cristiano Di Benedetto, Daniela Candia, Gianni Dehò i Alessandra Polissi. "Characterization of lptA and lptB, Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli". Journal of Bacteriology 189, nr 1 (20.10.2006): 244–53. http://dx.doi.org/10.1128/jb.01126-06.
Pełny tekst źródłaAronova, N. V., N. V. Pavlovich, M. V. Tsimbalistova, S. N. Golovin i A. S. Anisimova. "The Role of Outer Membrane Vesicles of Agents of Particularly Dangerous Infections in the Pathogenesis and Immunogenesis of Infectious Process". Problems of Particularly Dangerous Infections, nr 4 (24.01.2022): 6–15. http://dx.doi.org/10.21055/0370-1069-2021-4-6-15.
Pełny tekst źródłaChi, Ximin, Qiongxuan Fan, Yuanyuan Zhang, Ke Liang, Li Wan, Qiang Zhou i Yanyan Li. "Structural mechanism of phospholipids translocation by MlaFEDB complex". Cell Research 30, nr 12 (3.09.2020): 1127–35. http://dx.doi.org/10.1038/s41422-020-00404-6.
Pełny tekst źródłaLong, Feng, Chih-Chia Su, Hsiang-Ting Lei, Jani Reddy Bolla, Sylvia V. Do i Edward W. Yu. "Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex". Philosophical Transactions of the Royal Society B: Biological Sciences 367, nr 1592 (19.04.2012): 1047–58. http://dx.doi.org/10.1098/rstb.2011.0203.
Pełny tekst źródłaLenders, Michael H. H., Sven Reimann, Sander H. J. Smits i Lutz Schmitt. "Molecular insights into type I secretion systems". Biological Chemistry 394, nr 11 (1.11.2013): 1371–84. http://dx.doi.org/10.1515/hsz-2013-0171.
Pełny tekst źródłaAwang, Tadsanee, Phoom Chairatana, Ranjit Vijayan i Prapasiri Pongprayoon. "Evaluation of the Binding Mechanism of Human Defensin 5 in a Bacterial Membrane: A Simulation Study". International Journal of Molecular Sciences 22, nr 22 (17.11.2021): 12401. http://dx.doi.org/10.3390/ijms222212401.
Pełny tekst źródłaXiang, Quanju, Haiyan Wang, Zhongshan Wang, Yizheng Zhang i Changjiang Dong. "Characterization of lipopolysaccharide transport protein complex". Open Life Sciences 9, nr 2 (1.02.2014): 131–38. http://dx.doi.org/10.2478/s11535-013-0250-5.
Pełny tekst źródłaMensa, Bruk, Yong Ho Kim, Sungwook Choi, Richard Scott, Gregory A. Caputo i William F. DeGrado. "Antibacterial Mechanism of Action of Arylamide Foldamers". Antimicrobial Agents and Chemotherapy 55, nr 11 (15.08.2011): 5043–53. http://dx.doi.org/10.1128/aac.05009-11.
Pełny tekst źródłaUrfer, Matthias, Jasmina Bogdanovic, Fabio Lo Monte, Kerstin Moehle, Katja Zerbe, Ulrich Omasits, Christian H. Ahrens, Gabriella Pessi, Leo Eberl i John A. Robinson. "A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli". Journal of Biological Chemistry 291, nr 4 (1.12.2015): 1921–32. http://dx.doi.org/10.1074/jbc.m115.691725.
Pełny tekst źródłaTefsen, Boris, Martine P. Bos, Frank Beckers, Jan Tommassen i Hans de Cock. "MsbA Is Not Required for Phospholipid Transport in Neisseria meningitidis". Journal of Biological Chemistry 280, nr 43 (25.08.2005): 35961–66. http://dx.doi.org/10.1074/jbc.m509026200.
Pełny tekst źródłaKim, Peter D., i William Firshein. "Isolation of an Inner Membrane-Derived Subfraction That Supports In Vitro Replication of a Mini-RK2 Plasmid inEscherichia coli". Journal of Bacteriology 182, nr 6 (15.03.2000): 1757–60. http://dx.doi.org/10.1128/jb.182.6.1757-1760.2000.
Pełny tekst źródła