Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Gradient-Enhanced.

Artykuły w czasopismach na temat „Gradient-Enhanced”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Gradient-Enhanced”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

van Zijl, Peter C., i Ralph E. Hurd. "Gradient enhanced spectroscopy". Journal of Magnetic Resonance 213, nr 2 (grudzień 2011): 474–76. http://dx.doi.org/10.1016/j.jmr.2011.08.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hurd, Ralph E. "Gradient-enhanced spectroscopy". Journal of Magnetic Resonance 213, nr 2 (grudzień 2011): 467–73. http://dx.doi.org/10.1016/j.jmr.2011.09.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hurd, Ralph E. "Gradient-enhanced spectroscopy". Journal of Magnetic Resonance (1969) 87, nr 2 (kwiecień 1990): 422–28. http://dx.doi.org/10.1016/0022-2364(90)90021-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Alfaraj, Mohammed, Yuchun Wang i Yi Luo. "Enhanced isotropic gradient operator". Geophysical Prospecting 62, nr 3 (4.03.2014): 507–17. http://dx.doi.org/10.1111/1365-2478.12106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Moonen, Chrit T. W., Peter Van Gelderen, Geerten W. Vuister i Peter C. M. Van Zijl. "Gradient-enhanced exchange spectroscopy". Journal of Magnetic Resonance (1969) 97, nr 2 (kwiecień 1992): 419–25. http://dx.doi.org/10.1016/0022-2364(92)90327-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gangl, Markus, i Helmut Ritsch. "Cavity-enhanced polarization gradient cooling". Journal of Physics B: Atomic, Molecular and Optical Physics 35, nr 22 (4.11.2002): 4565–82. http://dx.doi.org/10.1088/0953-4075/35/22/301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Marro, Kenneth I., Donghoon Lee i Outi M. Hyyti. "Gradient-enhanced FAWSETS perfusion measurements". Journal of Magnetic Resonance 175, nr 2 (sierpień 2005): 185–92. http://dx.doi.org/10.1016/j.jmr.2005.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Poh, L. H., i S. Swaddiwudhipong. "Gradient-enhanced softening material models". International Journal of Plasticity 25, nr 11 (listopad 2009): 2094–121. http://dx.doi.org/10.1016/j.ijplas.2009.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Parella, T., F. Sanchezferrando i A. Virgili. "Selective Gradient-Enhanced Inverse Experiments". Journal of Magnetic Resonance, Series A 112, nr 1 (styczeń 1995): 106–8. http://dx.doi.org/10.1006/jmra.1995.1016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Roumestand, Christian, Pierre Mutzenhardt, Corinne Delay i Daniel Canet. "Gradient-Enhanced Band-Filtering Experiments". Magnetic Resonance in Chemistry 34, nr 10 (październik 1996): 807–14. http://dx.doi.org/10.1002/(sici)1097-458x(199610)34:10<807::aid-omr975>3.0.co;2-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

SUN, Linjun, Weijun LI, Xin NING, Liping ZHANG, Xiaoli DONG i Wei HE. "Gradient-Enhanced Softmax for Face Recognition". IEICE Transactions on Information and Systems E103.D, nr 5 (1.05.2020): 1185–89. http://dx.doi.org/10.1587/transinf.2019edl8103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Vuister, Geerten W., Rolf Boelens, Robert Kaptein, Maurits Burgering i Peter C. M. van Zijl. "Gradient-enhanced 3D NOESY-HMQC spectroscopy". Journal of Biomolecular NMR 2, nr 3 (maj 1992): 301–5. http://dx.doi.org/10.1007/bf01875323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kövér, Katalin E., Dušan Uhrı́n i Victor J. Hruby. "Gradient- and Sensitivity-Enhanced TOCSY Experiments". Journal of Magnetic Resonance 130, nr 2 (luty 1998): 162–68. http://dx.doi.org/10.1006/jmre.1997.1309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Gerig, J. T. "Gradient-enhanced proton-fluorine NOE experiments". Magnetic Resonance in Chemistry 37, nr 9 (wrzesień 1999): 647–52. http://dx.doi.org/10.1002/(sici)1097-458x(199909)37:9<647::aid-mrc520>3.0.co;2-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Ulaganathan, Selvakumar, Ivo Couckuyt, Tom Dhaene, Joris Degroote i Eric Laermans. "Performance study of gradient-enhanced Kriging". Engineering with Computers 32, nr 1 (19.02.2015): 15–34. http://dx.doi.org/10.1007/s00366-015-0397-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Laurenceau, J., M. Meaux, M. Montagnac i P. Sagaut. "Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers". AIAA Journal 48, nr 5 (maj 2010): 981–94. http://dx.doi.org/10.2514/1.45331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Yan, Ming, Jianxi Yang, Cen Chen, Joey Tianyi Zhou, Yi Pan i Zeng Zeng. "Enhanced gradient learning for deep neural networks". IET Image Processing 16, nr 2 (9.11.2021): 365–77. http://dx.doi.org/10.1049/ipr2.12353.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Lockwood, Brian A., i Mihai Anitescu. "Gradient-Enhanced Universal Kriging for Uncertainty Propagation". Nuclear Science and Engineering 170, nr 2 (luty 2012): 168–95. http://dx.doi.org/10.13182/nse10-86.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Simone, Angelo. "Explicit and implicit gradient-enhanced damage models". Revue Européenne de Génie Civil 11, nr 7-8 (sierpień 2007): 1023–44. http://dx.doi.org/10.1080/17747120.2007.9692975.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

de Borst, R., A. Benallal i O. M. Heeres. "A Gradient-Enhanced Damage Approach to Fracture". Le Journal de Physique IV 06, nr C6 (październik 1996): C6–491—C6–502. http://dx.doi.org/10.1051/jp4:1996649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Manzari, Majid T., i Karma Yonten. "C1finite element analysis in gradient enhanced continua". Mathematical and Computer Modelling 57, nr 9-10 (maj 2013): 2519–31. http://dx.doi.org/10.1016/j.mcm.2013.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shane, Erica S., John L. Anderson i Michael M. Domach. "Enhanced protein diffusion in a solvent gradient". Industrial & Engineering Chemistry Research 29, nr 2 (luty 1990): 309–12. http://dx.doi.org/10.1021/ie00098a024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Isaksson, P., i R. Hägglund. "Crack-tip fields in gradient enhanced elasticity". Engineering Fracture Mechanics 97 (styczeń 2013): 186–92. http://dx.doi.org/10.1016/j.engfracmech.2012.11.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Martínez-Pañeda, Emilio, Sandra Fuentes-Alonso i Covadonga Betegón. "Gradient-enhanced statistical analysis of cleavage fracture". European Journal of Mechanics - A/Solids 77 (wrzesień 2019): 103785. http://dx.doi.org/10.1016/j.euromechsol.2019.05.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Floros, Dimosthenis, Fredrik Larsson i Kenneth Runesson. "On configurational forces for gradient-enhanced inelasticity". Computational Mechanics 61, nr 4 (19.08.2017): 409–32. http://dx.doi.org/10.1007/s00466-017-1460-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Simone, Angelo. "Explicit and implicit gradient-enhanced damage models". Revue européenne de génie civil 11, nr 7-8 (1.10.2007): 1023–44. http://dx.doi.org/10.3166/regc.11.1023-1044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Cho, KyungHyun, Tapani Raiko i Alexander Ilin. "Enhanced Gradient for Training Restricted Boltzmann Machines". Neural Computation 25, nr 3 (marzec 2013): 805–31. http://dx.doi.org/10.1162/neco_a_00397.

Pełny tekst źródła
Streszczenie:
Restricted Boltzmann machines (RBMs) are often used as building blocks in greedy learning of deep networks. However, training this simple model can be laborious. Traditional learning algorithms often converge only with the right choice of metaparameters that specify, for example, learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data representation. An equivalent RBM can be obtained by flipping some bits and changing the weights and biases accordingly, but traditional learning rules are not invariant to such transformations. Without careful tuning of these training settings, traditional algorithms can easily get stuck or even diverge. In this letter, we present an enhanced gradient that is derived to be invariant to bit-flipping transformations. We experimentally show that the enhanced gradient yields more stable training of RBMs both when used with a fixed learning rate and an adaptive one.
Style APA, Harvard, Vancouver, ISO itp.
28

Chu, Jun, Jia Luo i Lu Leng. "Non-local Dehazing enhanced by color gradient". Multimedia Tools and Applications 78, nr 5 (11.02.2018): 5701–13. http://dx.doi.org/10.1007/s11042-018-5673-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Peerlings, R. H. J., R. de Borst, W. A. M. Brekelmans i M. G. D. Geers. "Gradient-enhanced damage modelling of concrete fracture". Mechanics of Cohesive-frictional Materials 3, nr 4 (październik 1998): 323–42. http://dx.doi.org/10.1002/(sici)1099-1484(1998100)3:4<323::aid-cfm51>3.0.co;2-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

PEERLINGS, R. H. J., R. DE BORST, W. A. M. BREKELMANS i J. H. P. DE VREE. "GRADIENT ENHANCED DAMAGE FOR QUASI-BRITTLE MATERIALS". International Journal for Numerical Methods in Engineering 39, nr 19 (15.10.1996): 3391–403. http://dx.doi.org/10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>3.0.co;2-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Wang, Dong, Huan Zhang, Jing Guo, Beichen Cheng, Yuan Cao, Shengjun Lu, Ning Zhao i Jian Xu. "Biomimetic Gradient Polymers with Enhanced Damping Capacities". Macromolecular Rapid Communications 37, nr 7 (18.01.2016): 655–61. http://dx.doi.org/10.1002/marc.201500637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bouhlel, Mohamed A., i Joaquim R. R. A. Martins. "Gradient-enhanced kriging for high-dimensional problems". Engineering with Computers 35, nr 1 (26.02.2018): 157–73. http://dx.doi.org/10.1007/s00366-018-0590-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bouwer, Johann M., Daniel N. Wilke i Schalk Kok. "Spatio-Temporal Gradient Enhanced Surrogate Modeling Strategies". Mathematical and Computational Applications 28, nr 2 (8.04.2023): 57. http://dx.doi.org/10.3390/mca28020057.

Pełny tekst źródła
Streszczenie:
This research compares the performance of space-time surrogate models (STSMs) and network surrogate models (NSMs). Specifically, when the system response varies over time (or pseudo-time), the surrogates must predict the system response. A surrogate model is used to approximate the response of computationally expensive spatial and temporal fields resulting from some computational mechanics simulations. Within a design context, a surrogate takes a vector of design variables that describe a current design and returns an approximation of the design’s response through a pseudo-time variable. To compare various radial basis function (RBF) surrogate modeling approaches, the prediction of a load displacement path of a snap-through structure is used as an example numerical problem. This work specifically considers the scenario where analytical sensitivities are available directly from the computational mechanics’ solver and therefore gradient enhanced surrogates are constructed. In addition, the gradients are used to perform a domain transformation preprocessing step to construct surrogate models in a more isotropic domain, which is conducive to RBFs. This work demonstrates that although the gradient-based domain transformation scheme offers a significant improvement to the performance of the space-time surrogate models (STSMs), the network surrogate model (NSM) is far more robust. This research offers explanations for the improved performance of NSMs over STSMs and recommends future research to improve the performance of STSMs.
Style APA, Harvard, Vancouver, ISO itp.
34

Kang, Shinseong, i Kyunghoon Lee. "Application of Gradient-Enhanced Kriging to Aerodynamic Coefficients Modeling With Physical Gradient Information". Journal of the Korean Society for Aeronautical & Space Sciences 48, nr 3 (31.03.2020): 175–85. http://dx.doi.org/10.5139/jksas.2020.48.3.175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

An, Xinlai, Weikang Bao, Zuhe Zhang, Zhouwen Jiang, Shengyun Yuan, Zesheng You i Yong Zhang. "Gradient Enhanced Strain Hardening and Tensile Deformability in a Gradient-Nanostructured Ni Alloy". Nanomaterials 11, nr 9 (18.09.2021): 2437. http://dx.doi.org/10.3390/nano11092437.

Pełny tekst źródła
Streszczenie:
Gradient-nanostructured material is an emerging category of material with spatial gradients in microstructural features. The incompatibility between gradient nanostructures (GNS) in the surface layer and coarse-grained (CG) core and their roles in extra strengthening and strain hardening have been well elucidated. Nevertheless, whether similar mechanisms exist within the GNS is not clear yet. Here, interactions between nanostructured layers constituting the GNS in a Ni alloy processed by surface mechanical rolling treatment were investigated by performing unique microtension tests on the whole GNS and three subdivided nanostructured layers at specific depths, respectively. The isolated nanograined layer at the topmost surface shows the highest strength but a brittle nature. With increasing depths, isolated layers exhibit lower strength but enhanced tensile plasticity. The GNS sample’s behavior complied more with the soft isolated layer at the inner side of GNS. Furthermore, an extra strain hardening was found in the GNS sample, leading to a greater uniform elongation (>3%) as compared to all of three constituent nanostructured layers. This extra strain hardening could be ascribed to the effects of the strain gradients arising from the incompatibility associated with the depth-dependent mechanical performance of various nanostructured layers.
Style APA, Harvard, Vancouver, ISO itp.
36

Chen, G., i G. Baker. "Enhanced Approach to Consistency in Gradient-Dependent Plasticity". Advances in Structural Engineering 7, nr 3 (lipiec 2004): 279–83. http://dx.doi.org/10.1260/136943304323213229.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Titscher, Thomas, Javier Oliver i Jörg F. Unger. "Implicit–Explicit Integration of Gradient-Enhanced Damage Models". Journal of Engineering Mechanics 145, nr 7 (lipiec 2019): 04019040. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001608.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Laurent, Luc, Rodolphe Le Riche, Bruno Soulier i Pierre-Alain Boucard. "An Overview of Gradient-Enhanced Metamodels with Applications". Archives of Computational Methods in Engineering 26, nr 1 (17.07.2017): 61–106. http://dx.doi.org/10.1007/s11831-017-9226-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Li, Xikui, Junbo Zhang i Xue Zhang. "Micro-macro homogenization of gradient-enhanced Cosserat media". European Journal of Mechanics - A/Solids 30, nr 3 (maj 2011): 362–72. http://dx.doi.org/10.1016/j.euromechsol.2010.10.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Ulaganathan, Selvakumar, Ivo Couckuyt, Francesco Ferranti, Eric Laermans i Tom Dhaene. "Performance study of multi-fidelity gradient enhanced kriging". Structural and Multidisciplinary Optimization 51, nr 5 (26.11.2014): 1017–33. http://dx.doi.org/10.1007/s00158-014-1192-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Jiang, Ting, i XiaoJian Zhou. "Gradient/Hessian-enhanced least square support vector regression". Information Processing Letters 134 (czerwiec 2018): 1–8. http://dx.doi.org/10.1016/j.ipl.2018.01.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Tyburn, Jean-Max, Ian M. Brereton i David M. Doddrell. "Coherence selection in gradient-enhanced, heteronuclear correlation spectroscopy". Journal of Magnetic Resonance (1969) 97, nr 2 (kwiecień 1992): 305–12. http://dx.doi.org/10.1016/0022-2364(92)90315-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Li, Gang, i Fuh-Gwo Yuan. "Gradient enhanced damage sizing for structural health management". Smart Materials and Structures 24, nr 2 (23.01.2015): 025036. http://dx.doi.org/10.1088/0964-1726/24/2/025036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chen, Tinggui, Junrui Jiao i Dejie Yu. "Enhanced broadband acoustic sensing in gradient coiled metamaterials". Journal of Physics D: Applied Physics 54, nr 8 (8.12.2020): 085501. http://dx.doi.org/10.1088/1361-6463/abc6d7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Zhang, Chun-Lei, Hui-Jing Du, Jian-Zhuo Zhu, Tian-Fu Xu i Xiao-Yong Fang. "Enhanced Photovoltaic Properties of Gradient Doping Solar Cells". Chinese Physics Letters 29, nr 12 (grudzień 2012): 127305. http://dx.doi.org/10.1088/0256-307x/29/12/127305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Zuiderweg, Erik R. P., i Aikaterini Rousaki. "Gradient-enhanced TROSY described with Cartesian product operators". Concepts in Magnetic Resonance Part A 38A, nr 6 (listopad 2011): 280–88. http://dx.doi.org/10.1002/cmr.a.20228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Xu, Yanjie, i Leong Hien Poh. "Localizing gradient‐enhanced Rousselier model for ductile fracture". International Journal for Numerical Methods in Engineering 119, nr 9 (15.04.2019): 826–51. http://dx.doi.org/10.1002/nme.6074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Geers, M. G. D., R. L. J. M. Ubachs i R. A. B. Engelen. "Strongly non-local gradient-enhanced finite strain elastoplasticity". International Journal for Numerical Methods in Engineering 56, nr 14 (2003): 2039–68. http://dx.doi.org/10.1002/nme.654.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Peerlings, R. H. J., W. A. M. Brekelmans, R. de Borst i M. G. D. Geers. "Gradient-enhanced damage modelling of high-cycle fatigue". International Journal for Numerical Methods in Engineering 49, nr 12 (2000): 1547–69. http://dx.doi.org/10.1002/1097-0207(20001230)49:12<1547::aid-nme16>3.0.co;2-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hurd, R. E., A. Deese, M. O'Neil Johnson, S. Sukumar i P. C. M. van Zijl. "Impact of Differential Linearity in Gradient-Enhanced NMR". Journal of Magnetic Resonance, Series A 119, nr 2 (kwiecień 1996): 285–88. http://dx.doi.org/10.1006/jmra.1996.0089.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii