Rozprawy doktorskie na temat „Gonadotropin releasing hormone – Receptors”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Gonadotropin releasing hormone – Receptors.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Gonadotropin releasing hormone – Receptors”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Flanagan, Colleen A. "Gonadotropin releasing hormone receptor ligand interactions". Doctoral thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/27029.

Pełny tekst źródła
Streszczenie:
The decapeptide, gonadotropin releasing hormone (GnRH), is the central regulator of reproductive function. It binds to receptors on the gonadotrope cells of the pituitary and stimulates release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). Eleven different structural forms of GnRH have now been identified in various animal species. Chimaeric analogues of some of the variant forms of GnRH were synthesized in order to study the functional significance of the most common amino acid substitutions, which occur in positions 5, 7 and 8. Peptide binding affinities for sheep and rat GnRH receptors and potencies in stimulating LH and FSH release from cultured sheep pituitary cells and LH release from cultured chicken pituitary cells were measured. Histidine in position 5 decreased LH releasing potency in chicken cells, but slightly increased receptor binding affinity in rat and sheep membranes. Tryptophan in position 7 had minimal effect on GnRH activity in mammals, but increased LH release in chicken cells. Although differences in the structural requirements of mammalian and chicken GnRH receptors were anticipated, it was also found that rat GnRH receptors exhibited higher affinity for analogues with Tryptophan in position 7, than did sheep GnRH receptors. Substitutions in position 8 revealed the most marked differences in the structural requirements of mammalian and chicken GnRH receptors. Arginine was required for high GnRH activity in mammalian systems, but analogues with neutral substitutions in position 8 were more potent in chicken pituitary cells. The tolerance of position 8 substitutions, combined with the relatively small effects, in chicken cells, of incorporating a D-amino acid in position 6, indicate that the chicken GnRH receptor is less stringent than mammalian receptors in its recognition of peptide conformation. To examine how changes in ligand structure cause changes in receptor binding affinity and receptor activation, it was necessary to know the structures of the GnRH receptors. A protocol was developed for the purification of GnRH binding proteins from detergent-solubilized pituitary membranes, by affinity chromatography. This procedure yielded a protein which migrated as a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis, but was different from the recently cloned GnRH receptor. To test the proposal that the arginine residue in mammalian GnRH interacts with an acidic receptor residue, eight conserved acidic residues of the cloned mouse GnRH receptor were mutated to asparagine or glutamine. Mutant receptors were transiently expressed in COS-1 cells and tested for decreased preference for Arg⁸-containing ligands by ligand binding and inositol phosphate production. One mutant receptor, in which the glutamate residue in position 301 was mutated, exhibited decreased affinity for mammalian GnRH. The mutant receptor also exhibited decreased affinity for [Lys⁸]-GnRH, but unchanged affinity for [Gln⁸]-GnRH compared with the wildtype receptor, and increased affinity for the acidic analogue, [Glu⁸]-GnRH. This loss of affinity was specific for the residue in position 8, because the mutant receptor retained hiszh affinity for analogues with favourable substitutions in positions 5, 6 and 7. Thus, the Glu³⁰¹ residue of the GnRH receptor plays a role in receptor recognition of Arg⁸ in the ligand, consistent with an electrostatic interaction between these two residues. The Glu³⁰¹ and Arg⁸ residues were not required for the high affinity interactions of conformationally constrained peptides. This indicates that an interaction which involves these two residues may induce changes in the conformation of GnRH after it has bound to the receptor.
Style APA, Harvard, Vancouver, ISO itp.
2

顔秀慧 i S. W. Ngan. "Transcriptional regulation of the human gonadotropin releasing hormonereceptor gene". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31240847.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Junling. "Ligand-independent activation of steroid hormone receptors by gonadotropin-releasing hormone". Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/34980.

Pełny tekst źródła
Streszczenie:
Nuclear receptors including estrogen receptors (ERs) and progesterone receptors (PRs) are activated by their ligands as well as by signaling pathways in response to peptide hormones and growth factors. In gonadotrophs, gonadotropin releasing hormones (GnRHs) act via the GnRH receptor (GnRHR). Both GnRH-I and GnRH-II activate an estrogen response element (ERE)-driven luciferase reporter gene in LβT2 mouse pituitary cells, and GnRH-I is more potent in this regard. The ERα is phosphorylated at Ser¹¹⁸ in the nucleus and at Ser¹⁶⁷ in both nucleus and cytoplasm after GnRI-I treatments, and this coincides with increased ERct binding to its co-activator, the P300/CBP-associated factor (PCAF). Most importantly, both GnRH subtypes robustly up-regulate expression of the immediate early response gene, Fosb, while co-treatment with ERα siRNA or PCAF siRNA attenuates this effect. This appears to occur at the transcriptional level because co-recruitment of ERα and PCAF to an ERE within the endogenous Fosb promoter is increased by GnRH treatments, as shown by chromatin immunoprecipitation assays. Furthermore, cross-talk between GnRH-I and PR accentuates gonadotropin production. GnRH-I activates a progesterone response element (PRE)-driven luciferase reporter gene and gonadotropin a subunit (Gsua) gene expression in two mouse gonadotroph cell lines, αT3-1 and LβT2. Up-regulation of the PRE-luciferase reporter gene by GnRH-I is attenuated by pre-treatment with protein kinase A (H89) and protein kinase C (GF109203X) inhibitors, while only GF109203X inhibits GnRH-1-induced Gsua mRNA levels. In both cell lines within the same time-frame, knockdown of PR levels by siRNA reduces GnRH-I activation of Gsua mRNA levels by approximately 40%. Both GnRH-I and GnRH-II also increase mouse Gnrhr-luciferase promoter activity and this is significantly reduced by knockdown of PR in LβT2 cells. We conclude that the effects of GnRH-I on Fosb and Gsua expression, as well as mouse Gnrhr promoter activity in mouse gonadotrophs are mediated by ligand-independent activation of ERα and PR. These ligand-independent effects of GnRHs on steroid hormone receptor function may influence the magnitude of changes in the expression of specific genes in the pituitary during the mouse estrous cycle, which in this context may serve as a model in the human menstrual cycle.
Style APA, Harvard, Vancouver, ISO itp.
4

Ngan, S. W. "Transcriptional regulation of the human gonadotropin releasing hormone receptor gene /". Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21687584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ma, Chi-him Eddie. "Molecular studies of gonadotropin releasing hormone receptors and estrogen receptors in goldfish (Carassius auratus)". Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B4257531X.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

馬智謙 i Chi-him Eddie Ma. "Molecular studies of gonadotropin releasing hormone receptors and estrogen receptors in goldfish (Carassius auratus)". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B4257531X.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sadie, Hanél. "Transcriptional regulation of the mouse gonadotropin-releasing hormone receptor gene in pituitary gonadotrope cell lines". Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/1495.

Pełny tekst źródła
Streszczenie:
Thesis (PhD (Biochemistry))--University of Stellenbosch, 2006.
Gonadotropin-releasing hormone (GnRH), acting via its cognate receptor (GnRHR) is the primary regulator of mammalian reproductive function. Pituitary sensitivity to GnRH can be directly correlated with GnRHR levels on the surface of the pituitary gonadotrope cells, which can be regulated at transcriptional, post-transcriptional and post-translational levels. This study investigated mechanisms of transcriptional regulation of mouse GnRHR expression in two mouse gonadotrope cell lines, αT3-1 and LβT2, using a combination of endogenous mRNA expression studies, promoter-reporter studies, a two-hybrid protein-protein interaction assay, Western blotting, and in vitro protein-DNA binding studies. In the first part of the study, the role of two GnRHR promoter nuclear receptor binding sites (NRSs) and their cognate transcription factors in basal and Protein Kinase A (PKA)-stimulated regulation of GnRHR promoter activity was investigated in αT3-1 cells. The distal NRS was found to be crucial for basal promoter activity in these cells. While the NRSs were not required for the PKA response in these cells, results indicate a modulatory role for the transcription factors Steroidogenic Factor-1 (SF-1) and Nur77 via these promoter elements. The second part of the study focused on elucidating the mechanism of homologous regulation of GnRHR transcription in LβT2 cells, with a view to defining the respective roles of PKA and Protein Kinase C (PKC) in the transcriptional response to GnRH. In addition, the respective roles of the NRSs, the cyclic AMP response element (CRE) and the Activator Protein-1 (AP-1) promoter cis elements, together with their cognate transcription factors, in basal and GnRH-stimulated GnRHR promoter activity, were investigated. Homologous upregulation of transcription of the endogenous gene was confirmed, and was quantified by means of real-time RTPCR. The GnRH response of the endogenous gene and of the transfected promoter-reporter construct required PKA and PKC activity, and the GnRH response of the promoter-reporter construct was found to be dependent on a functional AP-1 site. Furthermore, GnRH treatment resulted in increased binding of phosphorylated cAMP-response element binding protein (phospho-CREB) and decreased expression and binding of SF-1 to their cognate cis elements in vitro, and stimulated a direct interaction between SF-1 and CREB, suggesting that these events are also required for the full transcriptional response to GnRH. This study is the first providing detail regarding the mechanism of transcriptional regulation of GnRHR expression in LβT2 cells by GnRH. Based on results from this study, a model has been proposed which outlines for the first time the kinase pathways, the promoter cis elements and the cognate transcription factors involved in homologous regulation of GnRHR transcription in the LβT2 cell line. As certain aspects of this model have been confirmed for the endogenous GnRHR gene, the model is likely to be physiologically relevant, and provides new ideas and hypotheses to be tested in future studies.
Style APA, Harvard, Vancouver, ISO itp.
8

Van, Biljon Wilma. "The mammalian type II gonadotropin-releasing hormone receptor : cloning, distribution and role in gonadotropin gene expression". Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/17333.

Pełny tekst źródła
Streszczenie:
Dissertation (PhD)--University of Stellenbosch, 2006.
ENGLISH ABSTRACT: Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the reproductive system through its stimulation of gonadotropin synthesis and release from the pituitary via binding to its specific receptor, known as the gonadotropin-releasing hormone receptor type I (GnRHR-I). The gonadotropins, luteinising hormone (LH) and follicle-stimulating hormone (FSH), bind to receptors in the gonads, leading to effects on steroidogenesis and gametogenesis. The recent finding of a second form of the GnRH receptor, known as the type II GnRHR or GnRHR-II, in non-mammalian vertebrates triggered the interest into the possible existence and function of a GnRHR-II in humans. The current study addressed this issue by investigating the presence of transcripts for a GnRHR-II in various human tissues and cells. While it was demonstrated that antisense transcripts for this receptor, containing sequence of only two of the three coding exons, are ubiquitously and abundantly expressed in all tissues examined, potentially full-length (containing all three exons), sense transcripts for a GnRHR-II were detected only in human ejaculate. Further analysis revealed that the subset of cells in the ejaculate expressing these transcripts is mature sperm. These findings, together with the reported role for GnRH in spermatogenesis and reproduction led to the further analysis of the presence of a local GnRH/GnRHR network in human and vervet monkey ejaculate or sperm. Indeed, such a network seems to be present in humans since transcripts for both forms of GnRH present in mammals, as well as transcripts for the GnRHR-I, are expressed in human ejaculate. Furthermore, transcripts for the GnRHR-II are expressed in both human and vervet monkey ejaculate. Thus, it would appear that locally produced GnRH-1 and/or GnRH-2 in the human male reproductive tract might mediate their effects on fertility via a local GnRHR-I, and possibly via GnRHR-II. Remarkably, in the pituitary, LH and FSH are present in the same gonadotropes, yet they are differentially regulated by GnRH under various physiological conditions. While it is well established that post-transcriptional regulatory mechanisms occur, the contribution of transcriptional regulation to the differential expression of the LHβ- and FSHβ-subunit genes is unclear. In this study, the role of GnRH-1 and GnRH-2 via the GnRHR-I and the GnRHR-II in transcriptional regulation of mammalian LHβ- and FSHβ genes was determined in the LβT2 mouse pituitary gonadotrope cell-line. It is demonstrated for the first time that GnRH-1 may affect gonadotropin subunit gene expression via GnRHR-II in addition to GnRHR-I, and that GnRH-2 also has the ability to regulate gonadotropin subunit gene expression via both receptors. Similar to other reports, it is shown that the transcriptional response to GnRH-1 of LHβ and FSHβ is low (about 1.4-fold for bLHβLuc and 1.2-fold for oFSHβLuc). In addition, evidence is supplied for the first time that GnRH-2 transcriptional regulation of the gonadotropin β subunits is also low (about 1.5-fold for bLHβLuc and 1.1-fold for oFSHβLuc). It is demonstrated that GnRH-1 is a more potent stimulator of bLHβ promoter activity as compared to GnRH-2 via the GnRHR-I, yet both hormones result in a similar maximum induction of bLHβ. However, GnRH-2 is a more efficacious stimulator of bLHβ transcription via the GnRHR-II than GnRH-1. No discriminatory effect of GnRH-1 vs. GnRH-2 was observed for oFSHβ promoter activity via GnRHR-I or GnRHR-II. By comparison of the ratio of expression of transfected oFSHβ- and bLHβ promoterreporters via GnRH-1 with that of GnRH-2, it is shown that GnRH-2 is a selective regulator of FSHβ gene transcription. This discriminatory effect of GnRH-2 is specific for GnRHR-I, as it is not observed for GnRHR-II, where GnRH-1 results in a greater oFSHβ- to-bLHβ ratio. These opposite selectivities for GnRHR-I and GnRHR-II on the ratios of oFSHβ:bLHβ promoter activity for GnRH-1 vs. GnRH-2 suggest a mechanism for fine control of gonadotropin regulation in the pituitary by variation of relative GnRHR-I vs. GnRHR-II levels. In addition, a concentration-dependent modulatory role for PACAP on GnRH-1- and GnRH-2-mediated regulation of bLHβ promoter activity, via both GnRHR-I and GnRHR-II, and of oFSHβ promoter activity, via GnRHR-I, is indicated. The concentration-dependent effects suggest the involvement of two different signalling pathways for the PACAP response. Together these findings suggest that transcription of the gonadotropin genes in vivo is under extensive hormonal control that can be finetuned in response to varying physiological conditions, which include changing levels of GnRH-1, GnRH-2, GnRHR-I and GnRHR-II as well as PACAP.
AFRIKAANSE OPSOMMING: Gonadotropien-vrystellingshormoon (GnRH) is bekend as die sentrale reguleerder van die voorplantingsisteem deur die stimulasie van gonadotropiensintese en - vrystelling vanaf die pituïtêre klier via binding aan ‘n spesifieke reseptor, die sogenaamde tipe I gonadotropien-vrystellingshormoonreseptor (GnRHR-I). Die gonadotropiene, lutineringshormoon (LH) en follikel-stimuleringshormoon (FSH), bind aan reseptore in die gonades waar dit steroïedogenese en gametogenese beïnvloed. Die onlangse ontdekking van ‘n tweede vorm van die GnRH-reseptor, bekend as die tipe II GnRHR of GnRHR-II, in nie-soogdier vertebrate het belangstelling in die moontlike bestaan en funksie van ‘n GnRHR-II in die mens gewek. Hierdie kwessie is aangeraak deur die teenwoordigheid van transkripte vir ‘n GnRHR-II in verskeie weefsel- en seltipes van die mens te ondersoek. Daar is aangetoon dat nie-sin transkripte vir hierdie reseptor, wat die DNA-opeenvolgings van slegs twee van die drie koderende eksons bevat het, oormatig uitgedruk word in al die weefseltipes wat ondersoek is. Daarteenoor is potensieel vollengte (bevattende al drie eksons) sin transkripte vir ‘n GnRHR-II in die mens slegs in semen gevind. Verdere analise het getoon dat dit volwasse sperma binne die semen is wat laasgenoemde transkripte uitdruk. Hierdie bevindinge, tesame met die aangetoonde rol vir GnRH in spermatogenese en reproduksie het gelei tot die verdere analise van die teenwoordigheid van ‘n lokale GnRH/GnRHR-netwerk in mens- en blouaapsemen of -sperm. So ‘n netwerk blyk om teenwoordig te wees in die mens, aangesien transkripte vir beide vorme van GnRH wat in soogdiere gevind word, asook transkripte vir die GnRHR-I, in menssemen uitgedruk word. Daarbenewens word transkripte vir die GnRHR-II uitgedruk in beide mens- en blouaapsemen. Dit wil dus voorkom asof lokaalgeproduseerde GnRH-1 en/of GnRH-2 in die manlike voortplantingstelsel van die mens hul effek op vrugbaarheid bemiddel via ‘n lokale GnRHR-I, en moontlik ook via GnRHR-II. Dit is opmerklik dat LH en FSH teenwoordig is in dieselfde gonadotroopselle van die pituïtêre klier en tog verskillend gereguleer word deur GnRH tydens verskeie fisiologiese kondisies. Terwyl dit bekend is dat post-transkripsionele reguleringsmeganismes teenwoordig is, is die bydrae van transkripsionele regulering tot die differensiële uitdrukking van die LHβ- en FSHβ-subeenheidgene minder duidelik. In hierdie studie is die rol van GnRH-1 en GnRH-2 via die GnRHR-I en die GnRHR-II in transkripsionele regulering van soogdier-LHβ- en -FSHβ-gene in die LβT2 muis pituïtêre gonadotroopsellyn bepaal. Dit is vir die eerste keer aangetoon dat GnRH-1 ‘n effek mag hê op gonadotropiensubeenheid-geenuitdrukking via GnRHR-II bykomend tot GnRHR-I, en dat GnRH-2 ook die vermoë besit om gonadotropiensubeenheid-geenuitdrukking via beide reseptore te reguleer. Soos deur ander studies aangetoon is die transkripsionele respons van LHβ en FSHβ tot GnRH-1 klein (ongeveer 1.4-voudig vir bLHβLuc en 1.2- voudig vir oFSHβLuc). Verder is daar vir die eerste keer bewys gelewer dat transkripsionele regulering van die gonadotropien β-subeenhede deur GnRH-2 ook gering is (ongeveer 1.5-voudig vir bLHβLuc en 1.1-voudig vir oFSHβLuc). Daar is aangetoon dat GnRH-1 ‘n sterker stimuleerder van bLHβ-promotoraktiwiteit is in vergelyking met GnRH-2 via die GnRHR-I, hoewel beide hormone tot ‘n soortgelyke maksimum induksie van bLHβ lei. GnRH-2 is egter ‘n meer effektiewe stimuleerder van bLHβ-transkripsie as GnRH-1 via die GnRHR-II. Geen verskille is gevind tussen die effekte van GnRH-1 en GnRH-2 op oFSHβ-promotoraktiwiteit via GnRHR-I of GnRHR-II nie. Wanneer die verhouding van uitdrukking van getransfekteerde oFSHβ- en bLHβ- promotor-verslaggewers via GnRH-1 met dié van GnRH-2 vergelyk is, is aangetoon dat GnRH-2 ‘n selektiewe reguleerder van FSHβ-geentranskripsie is. Hierdie diskriminasieeffek van GnRH-2 is spesifiek vir GnRHR-I aangesien dit nie vir GnRHR-II waargeneem word nie. GnRH-1 lei tot ‘n groter oFSHβ tot bLHβ-verhouding via GnRHR-II. Hierdie teenoorgestelde selektiwiteite van GnRHR-I en GnRHR-II op die verhoudings van oFSHβ tot bLHβ-promotoraktiwiteit vir GnRH-1 teenoor GnRH-2 suggereer dat daar ‘n meganisme bestaan vir die fyn regulering van gonadotropiene in die pituïtêre klier, deurdat die relatiewe vlakke van GnRHR-I teenoor GnRHR-II gevarieer word. Daarbenewens is ‘n konsentrasie-afhanklike moduleringsrol vir PACAP op GnRH-1- en GnRH-2-bemiddelde regulering van bLHβ-promotoraktiwiteit aangetoon, via beide GnRHR-I en GnRHR-II, asook op oFSHβ-promotoraktiwiteit via GnRHR-I. Hierdie konsentrasie-afhanklike effekte dui op die betrokkenheid van twee verskillende seinpadweë vir die PACAP-respons. Tesame suggereer hierdie bevindinge dat transkripsie van die gonadotropiengene in vivo onder ekstensiewe hormonale kontrole is wat verfyn kan word in respons to veranderlike fisiologiese kondisies. Laasgenoemde sluit veranderende vlakke van GnRH-1, GnRH-2, GnRHR-I en GnRHR-II asook PACAP in.
Style APA, Harvard, Vancouver, ISO itp.
9

Von, Boetticher S. "Investigating the mechanism of transcriptional regulation of the gonadotropin-releasing hormone receptor (GnRHR) gene by dexamethasone". Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1796.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cheung, Wai-ting, i 張慧婷. "Role of gonadotropin-releasing hormone of metastatic potential of ovarian cancer cells". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41634184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Hoo, L. C., i 何麗莊. "Transcriptional regulation of the human gonadotropin-releasing hormone(GnRH) II and GnRH receptor genes". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29297011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Fernandes, S. M. (Sandra Maria). "Transcriptional regulation of the gonadotropin-releasing hormone receptor (GnRHR) gene by glucocorticoids". Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19595.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--University of Stellenbosch, 2007.
ENGLISH ABSTRACT: The gonadotropin-releasing hormone (GnRH) receptor is a G-protein-coupled receptor in the pituitary gonadotropes and is an important control point for reproduction. GnRH binds to the GnRH receptor (GnRHR) resulting in the synthesis and release of follicle stimulating hormone (FSH) and luteinizing hormone (LH). The sensitivity of the pituitary to GnRH can be directly correlated with GnRHR levels. The mouse GnRHR promoter contains three cis elements containing binding sites for steroidogenic factor-1 (SF-1), namely site 1 (-15/-7), site 2 (-244/- 236) and site 3 (-304/-296) as well as an activator protein-1 (AP-1)-like consensus sequence (TGAGTCA) at position –336/-330. While sites 1 and 2 and the AP-1 site have been previously shown to be involved in regulation of transcription of the mouse GnRHR (mGnRHR) promoter in some cell lines, the role of site 3 has not been previously investigated. This study investigated whether transcription of the mGnRHR gene is regulated by GnRH and glucocorticoids in the LβT2 gonadotrope pituitary cell line, and the role therein of site 3 and the AP-1 site and their cognate proteins, using a combination of in vitro protein- DNA binding studies and promoter-reporter assays. The role played by site 3 and the AP-1 site in basal transcription of the mGnRHR gene in LβT2 cells was the first area of investigation during this study. Luciferase reporter plasmids containing 600 bp of the mGnRHR promoter were used where the site 3 and AP-1 sites were either wild-type or mutated. Two constructs were prepared from the wild-type construct, i.e. wild type (LG), site 3 mutant (m3) and AP-1 mutant (mAP-1). Transfection of LG, m3 and mAP-1 plasmids into LβT2 cells was carried out to determine the effect of these mutations on the basal expression of the mGnRHR gene. Mutation of site 3 resulted in a 1.5 fold increase in the transcriptional activity of the mGnRHR promoter. This suggests that site 3 plays a role in the inhibition of basal transcriptional levels of the mGnRHR promoter in LβT2 cells. Mutation of the AP-1 site resulted in a 50% decrease in basal transcriptional levels of the mGnRHR promoter in LβT2 cells. This suggests that the AP-1 site is involved in positively mediating the basal transcriptional response of the GnRHR promoter in LβT2 cells. Experiments towards the understanding of the mechanism of the cis elements (site 3 and AP-1 site) on the mGnRHR promoter were carried out along with the role of protein kinase A (PKA) pathways, proteins involved and the effect of varying doses for varying times of GnRH, as well as the overexpression of PKA and the SF-1 protein. It was found that site 3 and the AP-1 site are not involved in the GnRH response. Results suggest that site 3 is partially involved in the PKA response in LβT2 cells. Site 3 can bind SF-1 protein as shown via competitive electrophoretic mobility shift assays (EMSA). When EMSA’s were performed on the AP-1 site the findings were that the c-Fos protein was not involved in the activation of the AP-1 site. A factor was found to bind to the AP-1 site, which did not require the intact AP-1 site, suggesting that it could be the c-Jun protein that binds to the AP-1 site under basal conditions. Another area that was investigated was whether the mGnRHR promoter can be regulated by dexamethasone (dex) either via the AP-1 site or site 3. A dose and time-dependent increase in promoter activity was observed with dex. This effect appears to require site 3 and the AP-1 site, as shown by the complete loss of response when these sites were individually mutated, consistent with a functional interaction between site 3 and the AP-1 site in LβT2 cells.
AFRIKAANSE OPSOMMING: Die gonadotropienvrystellings hormoon (GnRH) reseptor is ‘n G-proteïen-gekoppelde reseptor in die pituitêre gonadotrope en is ’n belangrike beheerpunt vir reproduksie. GnRH bind aan die GnRH reseptor (GnRHR) met die gevolg dat follikel stimulerende hormoon (FSH) en luteïeniserende (LH) gesintetiseer en vrygestel word. Die sensitiwiteit van die pituitêre klier vir GnRH kan direk met GnRHR vlakke gekorreleer word. Die muis GnRHR promotor bevat drie cis elemente met bindingssetels vir steroïedogeniese faktor 1 (SF1), naamlik setel 1 (-15/-7), setel 2 (-244/-236) en setel 3 (-304/-296) sowel as ’n aktiveerder proteïen 1 (AP-1) tipe konsensus sekwens (TGAGTCA) in posisie -336/-330. Terwyl setels 1 en 2 en die AP-1 setel voorheen getoon is om by die regulering van transkripsie van die muis GnRHR (mGnRHR) promotor in party sellyne betrokke te wees, is die rol van setel 3 nog nie vantevore bestudeer nie. In hierdie studie is ondersoek of die transkripsie van die mGnRHR geen deur GnRH en glukokortikoïede in die LβT2 gonadotroop pituitêre sellyn gereguleer word, en die rol van setel 3 en die AP-1 setel en hulle binders, deur gebruik te maak van in vitro proteïen-DNA bindings studies en promotor-verslaggewer essais. Die rol wat setel 3 en die AP-1 setel in basale transkripsie van die mGnRHR gene in LβT2 selle gespeel het, was die eerste onderwerp wat in hierdie studie bestudeer is. Lusiferase verslaggewer plasmiede wat die eerste 600 bp van die mGnRHR promotor bevat het en waarin setel 3 en die AP-1 setels óf wilde tipe óf gemuteer was, is gebruik. Two konstrukte is vanaf die wilde tipe konstruk berei, naamlik wilde tipe (LG), ’n setel 3 mutant (m3) en ’n AP-1 mutant (mAP-1). Transfeksie van LG, m3 en mAP-1 plasmiede in LβT2 selle is deurgevoer om te bepaal wat die effek van hierdie mutasies op die basale ekspressie van die mGnRHR gene was. Mutasie van setel 3 het ’n 1.5-voudige toename in die transkripsionele aktiwiteit van die mGnRHR promotor tot gevolg gehad. Dit suggereer dat setel 3 ’n rol in die inhibisie van die basale transkripsievlakke van die mGnRHR promotor in LβT2 selle speel. Mutasie van die AP-1 setel het tot ‘n 50% verlaging in basale transkripsievlakke van die mGnRHR promotor in LβT2 selle gelei. Dit suggereer dat die AP-1 setel betrokke is in die positiewe bemiddeling van die basale transkriptionele respons van die GnRHR promotor in LβT2 selle. Eksperimente wat gemik was om die meganisme van die cis-elemente (setel 3 en die AP-1 setel) op die mGnRHR promotor te verklaar, asook om die rol van proteïen kinase A (PKA) paaie, proteïene daarby betrokke en die effek van varieende dosisse vir verskillende tye van GnRH, sowel as die oorekspressie van PKA en die SF-1 proteïen, is deurgevoer. Dit is gevind dat setel 3 en die AP-1 setel nie betrokke by die GnRH respons is nie. Die resultate suggereer dat setel 3 gedeeltelik betrokke is by die PKA respons van LβT2 selle. Setel 3 kan SF-1 proteïen bind soos getoon deur kompeterence elektroforetiese mobiliteits verskuiwings essais (EMSA). As EMSA’s deurgevoer is op die AP-1 setel is bevind dat die c-Fos proteïen nie betrokke is in die aktivering van die AP-1 setel nie. ’n Faktor is gevind om aan die AP-1 setel te bind wat nie ’n intakte AP-1 setel vereis het nie, wat gesuggereer het dat dit die c-Jun proteïen kan wees wat aan die AP-1 setel onder basale omstandighede bind. ’n Ander area wat ondersoek is, is of die GnRHR promotor gereguleer kan word deur deksametasoon (dex) óf via die AP-1 setel óf via setel 3. ’n Dosis en tyds-afhanklike toename in promotor aktiwiteit is waargeneem met dex. ’n Vereiste vir hierdie effek blyk om die teenwoordigheid van setel 3 en die AP-1 setel te wees, soos aangetoon deur die totale verlies aan response as hierdie twee setels individueel gemuteer is, en wat weereens in ooreenstemming met die funksionele interaksie tussen setel 3 en die AP-1 setel in LβT2 selle is.
Style APA, Harvard, Vancouver, ISO itp.
13

Hutchinson, Emerentia. "The cloning of novel gonadotropin-releasing hormone receptors by polymerase chain reaction". Master's thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/26968.

Pełny tekst źródła
Streszczenie:
Gonadotropin-releasing hormone (GnRH), a central regulator of reproductive function in all vertebrates, exerts its effects via binding to the GnRH receptor (GnRHR) in the pituitary gonadotrophs. The GnRHR is a member of the G-protein coupled receptor (GPCR) superfarnily. A second form of the GnRHR (type II), other than the pituitary gonadotrope GnRHR (type I) has been proposed to exist and to play a role other than the classical endocrine role of the pituitary GnRHR. Elucidation of amino acid residues of the GnRHR that are crucial for ligand binding, activation of the receptor, and coupling to the G-protein, is important in understanding structure-function relationships towards the design of drugs for therapeutic intervention. Such information can often be deduced by a comparison between conserved and non-conserved amino acid residues of GnRHRs from different species. At the start of this project no non-mammalian or invertebrate, and only some of the eutherian mammalian type I GnRHRs had been cloned. The aim of this project was to clone novel GnRHRs, i.e. type I and type II GnRHRs from redbait and mole and type II mouse and human GnRHRs using polymerase chain reaction (PCR) strategies. PCR was performed with degenerate primers designed to human type I GnRHR to areas that are not conserved between GPCRs in general, but are conserved between mammalian GnRHRs.
Style APA, Harvard, Vancouver, ISO itp.
14

He, Mulan, i 何木蘭. "Molecular studies of two functional gonadotropin-releasing hormone receptors in goldfish, Carassius auratus". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31240240.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kirkpatrick, Bridgette Lee 1966. "Hormonal regulation of gonadotropin releasing hormone receptor expression in the ewe". Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282660.

Pełny tekst źródła
Streszczenie:
Endocrine regulation of expression of GnRH receptors is an important step in the control of reproduction. During the early follicular phase of the estrous cycle in the ewe, GnRH receptor expression increases in preparation for the preovulatory surge of LH. The studies described herein were designed to further elucidate the hormonal interactions controlling GnRH receptor expression. In long-term ovariectomized ewes, neither removal of progesterone, nor the presence of estradiol affected the expression of GnRH receptors. However, in ewes ovariectomized during the luteal phase of the estrous cycle and immediately implanted with progesterone and estradiol for 48 hours, low levels of estradiol for 24 hours were required to increase GnRH receptor mRNA following the removal of progesterone. In ovariectomized ewes following hypothalamic-pituitary disconnection, low levels of estradiol and pulsatile GnRH were required to increase GnRH receptor expression within 24 hours of treatment initiation. These results suggest an interaction between estradiol and GnRH is involved in increasing GnRH receptor expression during the periovulatory period. How progesterone, estradiol and, GnRH interact to increase GnRH receptors is unknown, but a possible candidate involved in mediating these interactions may be the cell specific transcription factor, steroidogenic factor-1 (SF-1). SF-1 mRNA increased within 24 hours of treatment of ewes with prostaglandin F₂(α) compared to ewes in the luteal phase of the estrous cycle. This suggests that progesterone may have an inhibitory effect on SF-1 mRNA. SF-1 mRNA was similar between ovariectomized ewes and ovariectomized ewes following hypothalamic-pituitary disconnection treated with estradiol and GnRH. Treatment with estradiol or GnRH alone did not increase SF-1 mRNA. The results of these experiments suggest that progesterone removal as well as the presence of estradiol and GnRH are required to increase GnRH receptor expression during the early follicular phase in the ewe. Further, the transcription factor, SF-1 may be involved in mediating the effects of these hormones on GnRH receptor expression.
Style APA, Harvard, Vancouver, ISO itp.
16

Lee, King-yiu. "Molecular cloning and characterization of gonadotropin-releasing hormone receptors in the black seabream (Mylio macrocephalus)". Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22823876.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Pithey, Anne Louise. "Autocrine regulation of gonadotropin-releasing hormone in immortalized hypothalamic GT1-7 neurons". Master's thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/27030.

Pełny tekst źródła
Streszczenie:
The existence of an ultrashort feedback mechanism regulating GnRH secretion has been supported from in vivo and in vitro studies. However, the complex synaptic connections of GnRH neurons with other neural elements made it difficult to determine whether the regulation was mediated by direct actions on the GnRH neurons or through actions on other interneurons. The recent development of the GnRH-secreting neuronal cell line, GT1, provided a model system for the study of neural regulation of a pure population of GnRH neurons. The present studies utilized GT1 -7 cells to investigate whether GnRH (at the level of the nerve terminal) influences the control of its own release. Preliminary studies determined the presence of GnRH mRNA in GT1-7 cells and established a cell culture system for the analysis of secretagogue-induced GnRH release. In this system GnRH release was shown to be spontaneous and was enhanced by the addition of K⁺, L-GLU, forskolin and PMA. Furthermore, K⁺- and forskolin-induced GnRH release was dependent on extracellular Ca²⁺. For the analysis of an ultrashort feedback mechanism, GT1-7 cells were cultured in 6-well plates to near confluence and then incubated in serum-free medium in the presence (1 nM- 1 μM) or absence of GnRH antagonist, Ant 27. Basal, K⁺-and forskolin-induced secretion of GnRH was monitored with antiserum 1076 which does not cross-react with Ant 27 at> 1 μM. Ant 27 treatment increased basal, K⁺- and forskolin-stimulated GnRH release in a dose-dependent manner. Total content was unaffected by 18 h treatment of GT1-7 cells with Ant 27. This suggests that the effects of Ant 27 are at the level of release and not biosynthesis. The presence of GnRH binding sites in the cells was demonstrated with ¹²⁵I-GnRH analog. These findings support the concept that GnRH, acting via autoreceptors, negatively controls its own release.
Style APA, Harvard, Vancouver, ISO itp.
18

Wormald, Patricia J. "GnRH and neuropeptide regulation of gonadotropin secretion from cultured human pituitary cells". Doctoral thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/27168.

Pełny tekst źródła
Streszczenie:
Gonadotropin-releasing hormone (GnRH) and its superactive analogues are currently being used in the treatment of a number of endocrine disorders, such as endometriosis, precocious puberty, infertility and prostatic cancer. Selection of these analogues for clinical use have been previously based on their activities in animal models. This thesis has therefore investigated the binding characteristics of the human GnRH receptor, in comparison to those of the rat receptor, as well as the activities of a number of GnRH analogues for stimulating luteinising hormone (LH) and follicle stimulating hormone (FSH) secretion from cultured human pituitary cells. The establishment of a human pituitary bioassay system has further made possible the investigation of the direct regulatory roles of GnRH and other neuropeptides in man. To date, such studies in man have been performed in vivo and are thus complicated by the simultaneous interactions of numerous modulators.
Style APA, Harvard, Vancouver, ISO itp.
19

李景耀 i King-yiu Lee. "Molecular cloning and characterization of gonadotropin-releasing hormone receptors in the black seabream (Mylio macrocephalus)". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Faurholm, Bjarne. "Gene structure, transcripts and transcriptional regulation of primate type II gonadotropin-releasing hormone receptors". Doctoral thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/3127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Pepa, Patricia Ann. "Repression of gonadotropin-releasing hormone gene expression by androgen receptor". Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/fullcit?p1477926.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--University of California, San Diego, 2010.
Title from first page of PDF file (viewed July 16, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (leaves 59-62).
Style APA, Harvard, Vancouver, ISO itp.
22

Cheng, Kwai Wa. "Transcription regulation of human gonadotropin-releasing hormone receptor gene expression". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ61070.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Dromey, Jasmin Rachel. "Elucidating novel aspects of hypothalamic releasing hormone receptor regulation". University of Western Australia. School of Medicine and Pharmacology, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0133.

Pełny tekst źródła
Streszczenie:
[Truncated abstract] G-protein coupled receptors (GPCRs) form one of the largest superfamilies of cell-surface receptors and respond to a vast range of stimuli including light, hormones and neurotransmitters. Although structurally similar, GPCRs are regulated by many diverse proteins, which allow the specific functions of each receptor to be carried out. This thesis focussed on two well-documented GPCRs, the thyrotropin releasing hormone receptor (TRHR) and gonadotrophin-releasing hormone receptor (GnRHR), which control the thyroid and reproductive endocrine pathways respectively. Although each of these anterior pituitary receptors is responsible for distinct physiological responses, both are integral to normal development and homeostasis. This thesis focused on three areas of GPCR regulation: ?-arrestin recruitment, transcription factor regulation and receptor up-regulation. The role of the cytoplasmic protein, ?-arrestin, has perhaps been previously underestimated in GPCR regulation, but it is now increasingly apparent that ?-arrestins not only inhibit further G-protein activation and assist in GPCR internalisation but also act as complex scaffolding platforms to mediate and amplify downstream signalling networks for hours after initial GPCR activation. It is therefore becoming increasingly important to be able to monitor such complexes in live cells over longer time-frames. ... Members of the E2F transcription family have been previously identified by this laboratory as potential GnRHR interacting proteins, via a yeast-2-hybrid screen and BRET. This thesis further investigated the role of E2F family members and demonstrates that a range of GPCRs are able to activate E2F transcriptional activity when stimulated by agonist. However, despite GnRHR displaying robust E2F transcriptional activation upon agonist stimulation, this did not result in any conclusive evidence for functional regulation, although it is possible E2F may modulate and assist in GnRHR trafficking. Furthermore it is apparent that E2F family members are highly redundant, as small effects in GnRHR binding and cell growth were only observed when protein levels of both E2F4 and E2F5 were altered. During the course of the investigation into the effect of E2F transcription on GPCR function, it was evident that long-term agonist stimulation of GnRHR had a profound effect on its expression. As this was explored further, it became clear that this agonist-induced up-regulation was both dose- and time-dependent. Furthermore, altering levels of intracellular calcium and receptor recycling/synthesis could modulate GnRHR up-regulation. In addition, an extremely sensitive CCD camera has been used for the first time to visualise the luciferase activity attributed to GnRHR up-regulation. Overall, this thesis demonstrates the complex nature of GPCR regulation. For the first time, long-term BRET analysis on ?-arrestin interactions with both classes of GPCRs has been examined in a variety of cellular formats. This has given valuable insights into the roles of phosphorylation and internalisation on ?-arrestin interaction. Additionally, this thesis has revealed that prolonged agonist exposure increases receptor expression levels, which has major implications for drug therapy regimes in the treatment of endocrine-related disorders and tumours.
Style APA, Harvard, Vancouver, ISO itp.
24

Sun, Yuh-Man. "Cloning and charaterisation of the Thyrotrophin-releasing hormone receptor and Gonadotrophin-relasing hormone receptor from chicken pituitary gland". Doctoral thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/26973.

Pełny tekst źródła
Streszczenie:
The hypothalamic hormones, thyrotrophin-releasing hormone (TRH) and gonadotrophin-releasing hormone (GnRH), play pivotal roles in the growth and sexual maturation of chickens. In chickens, TRH regulates the release and synthesis of thyrotrophin (TSH) and also acts as a growth hormone-releasing factor. GnRH stimulates the release and synthesis of gonadotrophins (LH and FSH). TRH and GnRH are released and stored in the median eminence, and both hormones are transported into the pituitary gland via the hypophysial portal circulation. TRH and GnRH exert their physiological functions by binding to their specific receptors (TRH receptor and GnRH receptor, respectively) on the surface of cells in the pituitary gland. The activated receptors couple to guanine nucleotide-binding regulatory proteins (G proteins), Gq and/or G11, which in turn triggers the secondary messenger [1,2- diacylglycerol (DAG) and inositoltrisphosphate (IP3)] signalling cascade. The signalling generates the physiological effects of the hormones. The TRH-R and GnRH-R are members of G-protein coupled receptor (GPCR) family. The objective of this thesis was to clone and characterise the chicken TRH and GnRH receptors as useful tools for investigating the regulatory roles of TRH and GnRH receptors in the growth and sexual maturation of chickens. In addition, sequence information of the receptors would potentially assist in elucidating the binding sites and the molecular nature of the processes involved in receptor activation.
Style APA, Harvard, Vancouver, ISO itp.
25

Styger, Gustav. "The role of steroidogenic factor-1 (SF-1) in transcriptional regulation of the gonadotropin-releasing hormone (GnRH) receptor gene". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52572.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--Stellenbosch University, 2001.
ENGLISH ABSTRACT: The GnRH receptor is a G-protein-coupled receptor in pituitary gonadotrope cells. Binding of its ligand, GnRH, results in synthesis and release of gonadotropin hormones luteinizing hormone (LH) and follicle stimulating hormone (FSH). Steroidogenic factor 1 (SF-1), a transcription factor, binds to specific sites in the promoter region of gonadotropin genes, and thus regulates transcription of these genes. The promoter region of the GnRHreceptor gene contains two SF-1-like binding sites, one at -14 to -8 (site 1) and another at -247 to -239 (site 2), relative to the methionine start codon. The role played by these two SF-1-like sites in basal transcription of the mouse GnRH receptor (mGnRH-R) gene in a pituitary precursor gonadotrope cell line, aT3 cells, was the first area of investigation during this study. Luciferase reporter constructs containing 580 bp of mGnRH-R gene promoter were prepared, where SF-1-like sites were either wildtype or mutated. Four such constructs were made, i.e. wildtype (LG), site 1 mutant (LGM1), site 2 mutant (LGM2) and mutated site 1 plus site 2 (LGM1/2). These constructs were transfected into aT3 cells to determine the effect of mutations of sites 1 and/or 2 on the basal expression of the mGnRH-R gene. Mutation of either site 1 or site 2 had no effect on basal expression of the mGnRH-R gene. It was found that only upon simultaneous mutation of both sites 1 and 2, a 50% reduction in basal transcription took place. The implications of this is that SF-1 protein seems to only require one intact DNA-binding site, to mediate basal transcription of the mGnRH-R gene, suggesting that these two sites lie in close proximity during basal transcription. The effect of the protein kinase A (PKA) pathway on the endogenous mGnRH-R gene was also investigated by incubating non- , transfected aT3 cells with the PKA activators, forskolin and 8-Br-cAMP. Similar incubations were also performed on the wild type and mutated site 1 constructs transfected into pituitary gonadotrope aT3 cells. It was found that forskolin and 8-Br-cAMP were able to increase endogenous mGnRH-R mRNA levels in a concentration-dependent fashion, showing that endogenous GnRH receptor gene expression is stimulated via a protein kinase A pathway. Similar results were obtained with the wildtype promoter construct, showing that the protein kinase A pathway stimulates transcription of the promoter. This effect was only seen with wild type and not with the mutated site 1. These results are consistent with a role for a SF-1-like transcription factor in mediating the protein kinase A effect via binding to the site 1 at position -14 in the GnRH receptor gene. A separate investigation was performed to determine whether 25-hydroxycholesterol (25-0HC) is a ligand for SF-1, by incubating aT3 cells transfected with the various constructs with 25-0HC. Results show a dose-dependant response, with an increase in gene expression at 1 μM and a decrease at higher concentrations, for both mutant and wild type constructs. This suggests that, if SF-1 is indeed the protein binding to sites 1 and 2, then 25-0HC is not a ligand for SF-1 protein in aT3 cells and that the effect of 25-0HC on the mGnRH-R gene is not mediated via site 1. The results indicate that these decreases of expression at the higher concentrations may be due to cytotoxic effects. Towards the end of the study the laboratory obtained a luminoskan instrument with automatic dispensing features. Optimisation studies on the luciferase and β-Gal assays were performed on the luminoskan in a bid to decrease experimental error. It was found that automation of these assays resulted in a decrease in experimental error, showing that future researchers could benefit substantially from these optimisation studies.
AFRIKAANSE OPSOMMING: Die GnRH reseptor is 'n G proteïen-gekoppelde reseptor in pituitêre gonadotroopselle. Binding van die ligand, GnRH, lei tot die sintese en vrystelling van die gonadotropien hormone, luteïniserende hormoon (LH) en follikel stimulerende hormoon (FSH). Steroidogeniese faktor-t (SF-1) is 'n transkripsie faktor wat aan spesifieke areas in die promotergebied van die gonadotropien hormone bind, en dus transkripsie van hierdie gene reguleer. Die promotergebied van die GnRH reseptor geen bevat twee SF-1 bindings areas, een by -14 to -8 (area 1) asook by -247 to -239 (area 2), relatief to die metionien beginkodon. Die rol wat hierdie twee SF-1 areas speel in basale transkripsie van die muis GnRH reseptor (mGnRH-R) geen in 'n pituïtêre voorloper gonadotroop sellyn, aT3 selle, was die eerste gebied van ondersoek gedurende hierdie studie. Plasmiede bestaande uit die 580 basispaar mGnRH-R promoter verbind aan 'n lusiferase geen is vervaardig, waar SF-1-soortige areas enersyds onveranderd gelaat is, of gemuteer is. Vier sulke plasmiede is vervaardig, nl. onveranderd (LG), area 1 mutant (LGM1), area 2 mutant (LGM2) en gemuteerde area 1 plus area 2 (LGM1/2). Hierdie plasmiede is gebruik om aT3 selle te transfekteer om die effek van mutasies van areas 1 en/of 2 op die basale ekspressie van die mGnRH-R geen te ondersoek. Daar is gevind dat mutasies van areas 1 of 2 geen effek op basale ekspressie op die bogenoemde geen gehad het nie. Slegs tydens gelyktydige mutasie van areas 1 en 2 het 'n 50% vermindering in basale transkripsie plaasgevind. Die implikasies hiervan is dat die SF-1 proteïen blykbaar slegs een volledige DNA-bindingsarea benodig om basale transkripsie van die mGnRH-R geen te reguleer. Dit wil dus voorkom of hierdie twee areas baie na aan mekaar geposisioneer is tydens basale transkripsie. Die effek van die proteïen kinase A (PKA) roete op die natuurlike mGnRH-R geen is ook ondersoek tydens inkubasie van nie-getransfekteerde aT3 selle met die PKA akiveerders, forskolin en 8-Br-cAMP. Soortgelyke inkubasie is ook gedoen op die onveranderde en gemuteerde area 1 plasmiede wat in aT3 selle getransfekteer is. Daar is gevind dat forskolin en 8-Br-cAMP daarin geslaag het om die natuurlike mGnRH-R geen mRNA vlakke op 'n konsentrasie-afhanklike wyse te vermeerder. Hierdie resultaat dui daarop aan dat die natuurlike mGnRH-R geen se ekspressie gestimuleer kan word via 'n proteïen kinase A roete. Soortgelyke resultate is verkry met die onveranderde promoter plasmied en dit wys ook daarop dat proteïen kinase A transkripsie deur die promoter kan stimuleer. Hierdie effek was slegs aanwesig met die onveranderde en nie met die gemuteerde area 1 plasmied nie. Die resultate stem ooreen met 'n rol vir SF-1 transkripsie faktor in die regulering van proteren kinase A effek deur middel van binding aan die area 1 by posisie -14 in die GnRH-R geen. 'n Afsonderlike ondersoek is gedoen om vas te stel of 25-hidroksiecholesterol (25-0HC) 'n ligand vir SF-1 is deur getransfekteerde aT3 selle met 25-0HC te inkubeer. Resultate toon 'n dosis-afhanklike respons met 'n verhoging in geen ekspressie by 1 μM en 'n verlaging met hoër konsentrasies vir beide onveranderde en gemuteerde plasmiede. Dit impliseer dat, indien SF-1 wel die faktor is wat aan areas 1 en 2 bind, 25-0HC nie die ligand vir SF-1 proteren in aT3 selle is nie en dat die effek van 25-0HC op die mGnRH-R geen nie gereguleer word via area 1 nie. Die verlaging in ekspressie gevind by die hoër konsentrasies is dalk die gevolg van sitotoksiese effekte. Teen die einde van die studie het die laboratorium luminoskan toerusting met outomatiese pipettering verkry. Optimiseringstudies van die lusifirase en β-Galtoetse is met die luminoskan gedoen in 'n poging om eksperimentele foute te minimaliseer. Daar is gevind dat outomatisering van hierdie toetse wel gelei het tot 'n verlaging in eksperimentele foute. Toekomstige navorsers kan dus grootliks voordeel trek uit hierdie optimiseringstudies.
Style APA, Harvard, Vancouver, ISO itp.
26

Ronacher, Katharina. "Internalisation of the type II gonadotropin-releasing hormone receptor of marmoset monkey". Doctoral thesis, University of Cape Town, 2003. http://hdl.handle.net/11427/8599.

Pełny tekst źródła
Streszczenie:
Bibliography: leaves 102-124.
The mammalian type II GnRH receptor has a C-terminal tail unlike the mammalian type I GnRH receptor, which uniquely lacks the cytoptasmic C- terminal domain. lnternalisation of a mammalian type ll GnRH receptor has never been investigated, therefore this thesis studies the internalisation pathway of the type ll GnRH receptor. As the C-terminal tail mediates rapid internalisation of many G protein-coupled receptors this research investigates the functional role of the C-terminal tail and intracellular loop in receptor internalisation. The internalisation pathway of the type ll GnRH receptor in COS-1 cells was investigated by co expressing dominant negative mutants and wild- type constructs of G protein-coupled receptor kinases (GRKs), dynamin-1 and β-arrestin 1 and 2 with the type II GnRH receptor. The results show that internatisation of the receptor requires GRK 2 and dynamin but does not require β-arrestin 1 and 2. Furthermore, inhibitors to both the caveolae pathway as well as the clathrin coated vesicle endocytosis abolished receptor internalisation indicating that both structures are involved in internalisation of the receptor. Even though in COS-1 cells the type ll GnRH receptor internatises in a β-arrestin independent manner, internalisation of this receptor can be enhanced by over-expression of wild type β-arrestin. This indicates that the type ll GnRH receptor is able to utilise a β-arrestin mediated internaltsation pathway if high levels of β-arrestin are present in the cell. The mammalian type ll GnRH receptor internalises with enhanced rate and extent compared to the tail-less human type I GHRH receptor. The role of the C-terminal tail of the type ll GnRH receptor in internalisation was investigated by measuring internalisation of C-terminally truncated mutants. It was found that the region between Gly 343 and Ser 335 within the C-terminal domain is important for receptor internalisation. Substitution of putative phosphorylation sites within this region revealed that Ser 338 and Ser 339 are critical for rapid receptor internalisation. Furthermore a serine residue in intracellular loop three (Ser 251) was shown to play a role in signalling as well as in internalisation. Since dominant negative GRK 2 could not inhibit internalisation of a mutant lacking all three serine residues, but could reduce internalisation of the wild-type receptor, we suggest that Ser 251, 338 and 339 are target of phosphorylation by GRK. However these phosphorylation sites as well as the C-terminal tail are not necessary for β-arrestin dependent internalisation. Taken together this thesis elucidates the internalisation pathway of a mammalian type lI GnRH receptor and identified residues within the C-terminal tail and intracellular loop three that are critical for rapid internalisation.
Style APA, Harvard, Vancouver, ISO itp.
27

Gill, John C. "Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor receptor signaling". Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p3190372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Nkwayana, Nonhlanhla. "β-arrestin interacting domains on the type II gonadotropin-releasing hormone (GnRH) receptor". Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/3178.

Pełny tekst źródła
Streszczenie:
Includes abstract.
Includes bibliographical references.
Includes bibliographical references (leaves 74-81).
Over-expression of β-arrestin 1 in COS-l cells revealed that the mammalian type GnRH receptor can internalise in a β-arrestin dependent manner whereas the internalisation of the mammalian type I GnRH receptor is β-arrestin independent. investigate which domains on the mammalian type II GnRH receptor are required for β~arrestin dependent internalisation, chimeric receptors were created.
The mammalian type II GnRH receptor possesses an intracellular C-terminal tail that is known to play a role in desensitisation, internalisation and overall signalling in GPCRs. On the other hand, the mammalian type I GnRH receptor, which lacks a C-terminal tail, does not readily desensitise and undergoes slow internalisation compared to the mammalian type II GnRH receptor. Over-expression of ß-arrestin 1 in COS-l cells revealed that the mammalian type GnRH receptor can internalise in a ß-arrestin dependent manner whereas the internalisation of the mammalian type I GnRH receptor is ß-arrestin independent. investigate which domains on the mammalian type II GnRH receptor are required for ß-arrestin dependent internalisation, chimeric receptors were created. Firstly, a chimera in which the full length type II GnRH receptor C-terminal tail was added to the tail-less type I GnRH receptor (TI/T2tail) was created. This chimera internalised in a ß-arrestin and GRK dependent manner, demonstrating that the type II GnRH receptor C-terminal tail confers ß-arrestin JGRK dependent internalisation on the originally ß-arrestin/GRK insensitive GnRH receptor. Mutating the putative GRK and casein kinase phosphorylation sites (serines 338 and 339) on the C-terminal tail of TI/T2tail to alanine residues did not abolish ß-arrestin dependent internalisation but eliminated GRK dependent internalisation, suggesting that other regions on the C-terminal tail are required for ß-arrestin dependent internalisation. A second chimera, in which the whole third intracellular loop of the type II GnRH receptor was replaced with that of the type I GnRH receptor (T2/TIICL3), was created. This chimera could not utilise ß-arrestin in its internalisation, indicating that the third intracellular loop of the type II GnRH receptor is required for ß-arrestin dependent internalisation. An alignment of the amino acid sequences of the two mammalian GnRH receptor third intracellular loops identified a basic residue rich area (R234, R236 and K237) on the type II GnRH receptor that was absent on the type I GnRH receptor. Interestingly, the triple mutant (R234,236,K237 A) still internalised in a ß-arrestin dependent manner, however, truncation of the C-terminal tail of R234,236,K237A abolished the ability of the receptor to internalise in a ß-arrestin dependent manner. This result indicated that the C-terminal tail of the type II GnRH receptor was compensating for the absence of the three basic residues. To summarise, this thesis demonstrates that the C-terminal tail of the type II GnRH receptor can confer ß-arrestin dependent intemalisation on the type I GnRH receptor. Furthermore, the third intracellular loop, and more specifically, basic residues R234, R236 and K237 on the mammalian type II GnRH receptor are required for ß-arrestin dependent intemalisation.
Style APA, Harvard, Vancouver, ISO itp.
29

Miles, Lauren E. C. "Mammalian cell growth and proliferation mediated by the gonadotropin-releasing hormone (GnRH) receptor : role of novel interacting protein partners". University of Western Australia. Centre for Medical Research, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0090.

Pełny tekst źródła
Streszczenie:
[Truncated abstract] It is becoming increasingly obvious that cell signalling pathways are more complicated than we originally perceived. Research is revealing that, not only is there a multitude of new proteins involved in signalling cascades, but also that previously identified proteins may have additional, alternate roles in intracellular trafficking. Gonadotropin-releasing hormone (GnRH) in conjunction with its receptor (GnRHR), the primary regulator of reproduction in all species, is no exception. In the past few years it has become readily accepted that the classic linear GnRHR-Gαq/11 signalling pathway is not universal and that this receptor is involved in a far greater range of cellular activities than was previously considered. In particular, it is widely accepted that continuous administration of GnRH analogs results in an inhibition of growth of a number of reproductive-derived tumours and that this may, in part, be mediated by direct activation of GnRHs expressed on these cells. However, it is not fully understood how the GnRHR mediates these growth effects or whether such effects are unique to reproductive-derived cancer cells. Research within this thesis aimed to determine how the presence or absence of this receptor in different cell types might affect the ability of GnRH to directly mediate growth effects. We demonstrate that continuous treatment with a GnRH agonist (GnRHA) induces an anti-proliferative effect in a gonadotropederived cell line (LβT2) and also in HEK293 cells stably expressing either the rat or human GnRHR. The anti-proliferative effect was time- and dose-dependent and was specifically mediated via the GnRHR, as co-treatment of the GnRHRexpressing cell lines with a GnRH antagonist blocked the growth suppressive effect induced by GnRHA treatment. Cell cycle analysis revealed that the GnRHA treated HEK/GnRHR cell lines induced an accumulation of cells in the G2/M phase while a G0/G1 arrest was observed in LβT2 cells. Previous identification by our group of a potential interaction between the GnRHR and the transcription factor E2F4, an integral cell cycle regulatory protein, prompted further investigation as to the nature of this interaction. Bioluminescence energy transfer (BRET) was utilised to demonstrate that the GnRHR also interacts with E2F5, another member of the E2F family of cell cycle proteins that shares a high level of homology to E2F4. In addition, it was determined that the interaction between human GnRHR and E2F4, detected using BRET, was influenced by cell density.
Style APA, Harvard, Vancouver, ISO itp.
30

Troskie, Brigitte Elise. "Cloning and characterisation of gonadotropin-releasing hormone receptors from species in non-mammalian vertebrate classes : amphibia and osteichthyes". Doctoral thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/26916.

Pełny tekst źródła
Streszczenie:
Two or more forms of gonadotropin-releasing hormone (GnRH) have been isolated from most vertebrate species. In most species, GnRH variants have been shown to occur in distinct areas of the peripheral and central nervous systems, the gonads and other peripheral organs. Although GnRH is a primary regulator of gonadotropin secretion, it has been shown to have additional roles such as the regulation of growth hormone secretion in goldfish and the inhibition of a potassium current (M-current) in amphibian sympathetic ganglia. This raises the possibility of the occurrence of multiple GnRH receptor subtypes. This thesis describes the cloning and characterisation of GnRH receptor subtypes from two nonmammalian vertebrates, the Amphibian, Xenopus laevis and the Osteichthyes, Carassius auratus (goldfish). Using degenerate primers designed to the mammalian GnRH receptors two putative receptor subtypes were identified from both X. laevis (X/a.1 and X/b.1) and goldfish (GfA and GfB) genomic DNA. The full-length cDNA for X/a.1, was cloned from pituitary cDNA. When transiently expressed in COS-1 cells, this clone showed a GnRH-dependent stimulation of inositol phosphates. No full-length clone for X/b.1 could be isolated using cDNA from several different tissues. A partially processed transcript was, however, amplified from sympathetic ganglia cDNA. These ganglia showed specific binding to a chicken GnRH II (cGnRH II) agonist and cGnRH II immunoreactivity was also detected in extracts from the ganglia. The expression, function and pharmacology of clone X/b.1, thus remains unknown, but the presence of cGnRH II-specific binding sites on membranes from the sympathetic ganglia with distinctly different pharmacology, implies the presence of a second GnRH receptor subtype in these neurons. Full-length cDNA clones of GfA and GfB were amplified from goldfish pituitary and brain cDNA respectively. These receptors had a 71% amino acid identity to each other and a 43% amino acid identity to the human GnRH receptor. The pharmacology of these two GnRH receptor subtypes was investigated by transient expression in COS-1 cells. The GfA and GfB receptors had different pharmacologies as demonstrated by their selectivities for GnRH analogues. In situ hybridisation revealed a distinct expression pattern of the goldfish GnRH receptor subtypes in the brain, gonads and liver (Dr R. Peter, University of Alberta). The full-length receptors cloned from the pituitaries and brain of X. /aevis and the goldfish have a low homology to the cloned mammalian GnRH receptors and have several different features, such as the presence of an intracellular carboxy-terminal tail. This thesis, describing the primary structure and characterisation of ligand selectivity of non-mammalian GnRH receptors, provides some useful foundations for future work towards understanding ligand recognition in the GnRH receptor. The description of multiple receptor subtypes in the goldfish and possibly in X. laevis also provides valuable information into alternative roles of GnRH and its receptor, which we are only beginning to understand.
Style APA, Harvard, Vancouver, ISO itp.
31

Sedgley, Kathleen Ruth. "An investigation into the regulation and trafficking of gonadotrophin-releasing hormone receptors". Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Morley, Michelle Gaye. "Cloning and characterisation of gonadotropin-releasing hormone (GnRH) receptors in the cichlid (Haplochromis burtoni) and the zebrafish (Danio rerio)". Master's thesis, University of Cape Town, 2003. http://hdl.handle.net/11427/6949.

Pełny tekst źródła
Streszczenie:
Bibliography: leaves 75-89.
The identification of multiple forms of gonadotropin-releasing hormone (GnRH) in a single species is becoming a common occurrence. The highly conserved chicken GnRH II is present along with one or two other GnRHs, composing a combination unique to particular species. This multifunctional peptide is widely distributed through the central nervous system and peripheral tissues. Also, endogenous GnRHs demonstrate distinct patterns of spatial expression within the brain, suggesting they may have separate functions. In addition to being the primary regulator of gonadotropin secretion in vertebrates, GnRH is also involved in the release of GH and prolactin and may fulfil a possible neuromodulatory role. GnRHs exert their actions through the stimulation of distinct GnRH receptors on pituitary gonadotrophs. The presence of multiple GnRH receptor subtypes has been demonstrated in several species and is likely to be a common characteristic of most vertebrates. This thesis describes the cloning and characterisation of GnRH receptors in two species of teleost fish, Haplochromis burtoni (cichlid) and Dania rerio (zebrafish). A type I GnRH receptor has previously been shown to exist in the cichlid. In the present study degenerate primers designed to extracellular loop three of the mammalian GnRH receptors were used to identify a second putative receptor subtype from cichlid (Haplochramis burtoni) genomic DNA. Furthermore, a near full-length cDNA, encompassing transmembrane domain 1 through to transmembrane domain 7 of the GnRH receptor, was cloned from cichlid RNA by reverse transcriptase PCR. This region of the receptor shares approximately 80% amino acid homology with corresponding regions of type III GnRH receptors previously identified in species of perciform fish. Partial sequences of a type IA and a type lB GnRH receptor have previously been identified in the zebrafish. Two sets of degenerate primers were used to elucidate the possible existence of a third receptor in the zebrafish using both genomic DNA and RNA. However, this strategy failed to result in the amplification of novel receptor subtypes in the zebrafish. Controversy surrounds the developmental origins of GnRH neurons and their temporal expression in relation to GnRH receptors. The zebrafish is a model organism, widely used for the study of reporter gene expression during development. Hence an attempt was made to isolate the zebrafish GnRH receptor genes using a genomic DNA library and identify the promoter regions for use as reporter genes in the study of GnRH and GnRH receptor expression during development. Southern blot analysis revealed six genomic clones with sequences homologous to zebrafish GnRH receptor cDNA. Comparison with genomic and cDNA sequences of other GnRH receptors revealed that those regions of the genomic clones that were sequenced only encoded exons 2 and 3. The presence of large introns in the GnRH receptor gene made it difficult to identify genomic clones containing the entire gene and the promoter region. The cloning of part of the zebrafish GnRH receptor genes will make their complete characterisation somewhat less problematic since an idea of their basic intron/exon structure has been obtained. Exons 2 and 3 of the zebrafish type IA and type IB GnRH receptor genes show a high degree of conservation when compared to the same regions of the goldfish type IA and type IB GnRH receptor cDNAs, demonstrating approximately 90% homology in both cases. In this study sequence information was obtained for the regions between transmembrane domains 4 and 7, and 3 and 7 of the zebrafish type IA and type IB GnRH receptor genes, respectively, and was subsequently used clone zebrafish GnRH receptor full-length cDNAs. This study describes the discovery of a type III GnRH receptor in the cichlid but suggests its presence may be restricted to only certain orders of teleost since a type III receptor was not identified in the zebrafish on this occasion. The information acquired from this study may help to reveal patterns, which relate the presence of particular GnRHs and GnRH receptors in single species to specific reproductive requirements.
Style APA, Harvard, Vancouver, ISO itp.
33

Corchuelo, Chavarro Sheryll Yohana [UNESP]. "GnRH/GnIH e seus receptores no sistema olfato-retinal de zebrafish". Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/134047.

Pełny tekst źródła
Streszczenie:
Made available in DSpace on 2016-02-05T18:29:24Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-05-29. Added 1 bitstream(s) on 2016-02-05T18:33:27Z : No. of bitstreams: 1 000854973_20161205.pdf: 410109 bytes, checksum: 5ceaa1852fc805e9d99744c37a96f7bb (MD5) Bitstreams deleted on 2016-12-06T15:11:22Z: 000854973_20161205.pdf,. Added 1 bitstream(s) on 2016-12-06T15:12:04Z : No. of bitstreams: 1 000854973.pdf: 2773395 bytes, checksum: daf1de70009034e8b87b75a4cc4b7610 (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O hormônio liberador de gonadotropina (GnRH) é um dos fatores chaves na regulação neuroendócrina da reprodução dos vertebrados. Alguns peixes apresentam três variantes do GnRH: o GnRH1 envolvido na secreção de gonadotropinas, o GnRH2 que regula o comportamento alimentar e sexual e o GnRH3 expresso no bulbo olfatório e o nervo terminal cujas fibras nervosas inervam a retina e o epitélio olfatório. O zebrafish possui duas variantes do GnRH (GnRH2 e GnRH3), sendo o GnRH3 a variante hipofisiotrófica. Estudos mostram possível envolvimento do GnRH no sistema olfato-retinal. No sistema olfatório o GnRH regula a sensibilidade na detecção de alimento, o reconhecimento intra e interespecífico, entre outros. Na retina, o GnRH3 pode estar envolvido na acuidade visual e do processamento de informação da retina. Existem estudos que reportam a presença de receptores de GnRH em diferentes camadas da retina, no entanto ainda não é clara a presença de receptores no epitélio olfatório. Neste contexto, no presente estudo analisamos a localização do gnrh2, gnrh3 e seus receptores (gnrhr1,2,3 e 4) e do gnih (hormônio inibidor de gonadotropinas) no epitélio olfatório, a retina e o bulbo olfatório de machos e fêmeas adultos e comparamos a expressão destes genes em fêmeas em diferentes estágios de maturação gonadal. Para tanto, o RNA total do epitélio olfatório, retina, bulbo olfatório, cérebro e gônadas foi extraído. Com base na sequência dos genes gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3 e gnrhr4, primers forward e reverse foram desenhados para RT-PCR e qPCR. Sondas para a hibridização in situ também foram construídas para verificar os sítios de expressão destas moléculas no epitélio olfatório, retina e gônadas. Imunohistoquímica com os anticorpos anti-GnRH3 (BB8 e GF6) foram realizadas para localizar a proteína do GnRH3 nos tecidos analisados. O presente estudo apresenta um panorama da expressão do sistema...
The gonadotropin releasing hormone (GnRH) is one of the key factors involved in the neuroendocrine regulation of vertebrate reproduction. Some fish species have three GnRH variants: GnRH1 involved in gonadotropin secretion, GnRH2 regulating food and sexual behaviors and the GnRH3 which is expressed in the olfactory bulb and terminal nerve whose fibers innervate the retina and the olfactory epithelium. Two GnRH variants (GnRH2 and GnRH3) are present in the zebrafish, in which GnRH3 acts as the hypophisiotrophic variant. Recent studies have been showing the role of GnRH in the olfactory-retinal system. In the olfactory system, GnRH regulates food detection, and intra and interspecific recognition. In retina, GnRH3 may be involved in visual acuity modulation and retinal processing information. Moreover, studies have reported the presence of GnRH receptors in the retina, but not yet in the zebrafish olfactory epithelium. Therefore, the current study analyzed the presence of GnRH2, GnRH3 and its receptors (GnRH-R1,2,3 and 4) and GnIH (gonadotropin inhibitory hormone) in the olfactory epithelium, olfactory bulb, retina and in gonads of adult zebrafish. We also compared the expression of these genes during the different stages of ovarian maturation in zebrafish. For that, total RNA of the olfactory epithelium, olfactory bulb, retina and gonads was extracted with the PureLink® RNA Mini Kit(Ambion®). RT-PCR and qPCR analysis were performed using forward and reverse primers for gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3, gnrhr4 for . Probes for in situ hybridization were constructed to verify the expression sites of these molecules in the olfactory epithelium, retina, and gonads. Immunohistochemistry usinganti-GnRH3 antibodies (BB8 and GF6) were performed to identify the GnRH3 protein in these tissues. The current study presents a general expression view of GnRH/GnIH and their receptors in the olfactory epithelium-olfactory bulb-retinal axis during ...
FAPESP: 2014/02481-9
Style APA, Harvard, Vancouver, ISO itp.
34

Corchuelo, Chavarro Sheryll Yohana. "GnRH/GnIH e seus receptores no sistema olfato-retinal de zebrafish /". Jaboticabal, 2015. http://hdl.handle.net/11449/134047.

Pełny tekst źródła
Streszczenie:
Orientador: Laura Satiko Okada Nakaghi
Coorientador: Rafael Henrique Nóbrega
Banca: Elisabeth Criscuolo Urbinati
Banca: Matias Pandolfi
Resumo: O hormônio liberador de gonadotropina (GnRH) é um dos fatores chaves na regulação neuroendócrina da reprodução dos vertebrados. Alguns peixes apresentam três variantes do GnRH: o GnRH1 envolvido na secreção de gonadotropinas, o GnRH2 que regula o comportamento alimentar e sexual e o GnRH3 expresso no bulbo olfatório e o nervo terminal cujas fibras nervosas inervam a retina e o epitélio olfatório. O zebrafish possui duas variantes do GnRH (GnRH2 e GnRH3), sendo o GnRH3 a variante hipofisiotrófica. Estudos mostram possível envolvimento do GnRH no sistema olfato-retinal. No sistema olfatório o GnRH regula a sensibilidade na detecção de alimento, o reconhecimento intra e interespecífico, entre outros. Na retina, o GnRH3 pode estar envolvido na acuidade visual e do processamento de informação da retina. Existem estudos que reportam a presença de receptores de GnRH em diferentes camadas da retina, no entanto ainda não é clara a presença de receptores no epitélio olfatório. Neste contexto, no presente estudo analisamos a localização do gnrh2, gnrh3 e seus receptores (gnrhr1,2,3 e 4) e do gnih (hormônio inibidor de gonadotropinas) no epitélio olfatório, a retina e o bulbo olfatório de machos e fêmeas adultos e comparamos a expressão destes genes em fêmeas em diferentes estágios de maturação gonadal. Para tanto, o RNA total do epitélio olfatório, retina, bulbo olfatório, cérebro e gônadas foi extraído. Com base na sequência dos genes gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3 e gnrhr4, primers forward e reverse foram desenhados para RT-PCR e qPCR. Sondas para a hibridização in situ também foram construídas para verificar os sítios de expressão destas moléculas no epitélio olfatório, retina e gônadas. Imunohistoquímica com os anticorpos anti-GnRH3 (BB8 e GF6) foram realizadas para localizar a proteína do GnRH3 nos tecidos analisados. O presente estudo apresenta um panorama da expressão do sistema...
Abstract: The gonadotropin releasing hormone (GnRH) is one of the key factors involved in the neuroendocrine regulation of vertebrate reproduction. Some fish species have three GnRH variants: GnRH1 involved in gonadotropin secretion, GnRH2 regulating food and sexual behaviors and the GnRH3 which is expressed in the olfactory bulb and terminal nerve whose fibers innervate the retina and the olfactory epithelium. Two GnRH variants (GnRH2 and GnRH3) are present in the zebrafish, in which GnRH3 acts as the hypophisiotrophic variant. Recent studies have been showing the role of GnRH in the olfactory-retinal system. In the olfactory system, GnRH regulates food detection, and intra and interspecific recognition. In retina, GnRH3 may be involved in visual acuity modulation and retinal processing information. Moreover, studies have reported the presence of GnRH receptors in the retina, but not yet in the zebrafish olfactory epithelium. Therefore, the current study analyzed the presence of GnRH2, GnRH3 and its receptors (GnRH-R1,2,3 and 4) and GnIH (gonadotropin inhibitory hormone) in the olfactory epithelium, olfactory bulb, retina and in gonads of adult zebrafish. We also compared the expression of these genes during the different stages of ovarian maturation in zebrafish. For that, total RNA of the olfactory epithelium, olfactory bulb, retina and gonads was extracted with the PureLink® RNA Mini Kit(Ambion®). RT-PCR and qPCR analysis were performed using forward and reverse primers for gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3, gnrhr4 for . Probes for in situ hybridization were constructed to verify the expression sites of these molecules in the olfactory epithelium, retina, and gonads. Immunohistochemistry usinganti-GnRH3 antibodies (BB8 and GF6) were performed to identify the GnRH3 protein in these tissues. The current study presents a general expression view of GnRH/GnIH and their receptors in the olfactory epithelium-olfactory bulb-retinal axis during ...
Mestre
Style APA, Harvard, Vancouver, ISO itp.
35

Wehmeyer, Lance. "Investigating crosstalk in lipid rafts between the glucocorticoid receptor and gonadotropin-releasing hormone receptor signaling pathways in a gonadotrope cell line". Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/11346.

Pełny tekst źródła
Streszczenie:
Includes abstract.
Includes bibliographical references (leaves 121-158).
A recent study from the Hapgood laboratory demonstrated the presence of a novel crosstalk mechanism between the glucocorticoid receptor (GR) and gonadotropin-releasing hormone receptor (GnRHR), indicating an additional direct mechanism for the effects of stress on reproduction. The present study investigated whether this crosstalk between the GR and GnRHR involves the co-localization of these receptors to lipid rafts, providing a specialized distinct region where the receptors can be in close proximity and reciprocally modulate each other’s signaling pathways.
Style APA, Harvard, Vancouver, ISO itp.
36

Phillips, Pumza Samantha. "The role of Gai in the Gonadotropin-releasing hormone (GnRH) receptor inhibition of cell proliferation". Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11787.

Pełny tekst źródła
Streszczenie:
Includes abstract.
Includes bibliographical references (leaves 72-78).
The activation of Gonadotropin-releasing hormone receptor (GnRHR) by the GnRH ligand has been shown to mediate antiproliferative effects in extra-pituitary cells and in reproductive cancer cell lines. The GnRHR couples to Gαq in pituitary gonadotropes. However, the GnRHR expressed in reproductive cancer cell lines is thought to couple to Gαi. Recent evidence also suggests that the antiproliferative effects may be mediated via Gαq in these cells. Therefore our study involved determining the role of Gαi in the antiproliferative effects mediated by the GnRHR. The results suggest that the Gαi pathway could play a role in mediating the antiproliferative effects of GnRH.
Style APA, Harvard, Vancouver, ISO itp.
37

Kotitschke, Andrea. "Genomic and Non-Genomic cross talk between the Gonadotropin- releasing hormone receptor and glucocorticoid receptor signalling pathways". Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/4283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Fromme, Bernhard Johannes. "The role of extracellular loop three of the human gonadotropin releasing hormone receptor in ligand selectivity". Doctoral thesis, University of Cape Town, 2001. http://hdl.handle.net/11427/3129.

Pełny tekst źródła
Streszczenie:
Bibliography: leaves 123-146.
The hypothalamic neuropeptide, gonadotropin releasing hormone (GnRH) perferentially inteacts with GnRH type I receptors on the gonadotropes in the anterior pituitary. Activation of the GnRH receptor is required for the biosynthesis and release of luteinizing hormone (LH) and follicle stimulating hormone (FSH), which regulate reproductive function. Multiple forms of GnRH are present in most vertebrate species and are thought to have physiological functions in addition to regulating pituitary hormone release. The mammalian type I GnRH receptor is proposed to discriminate between endogenous forms of GnRH (King and Millar, 1995). In this thesis the mechanism of the GnRH selectivity by a mammalian type I GnRH receptor is examined at molecular level and previous hypotheses are re-evaluated.
Style APA, Harvard, Vancouver, ISO itp.
39

Pheiffer, Carmen P. "The role of steroidogenic factor-1 (SF-1) in gonadotropin-releasing hormone (GnRH) receptor gene regulation". Master's thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/26970.

Pełny tekst źródła
Streszczenie:
Gonadotropin releasing hormone (GnRH) is a key reproductive hormone in vertebrates and exerts its effects via the GnRH receptor (GnRHR) to result in the synthesis and release of the gonadotropin hormones in the pituitary gonadotrope cells. GnRHR expression is likely to be regulated in a tissue- and cell- specific manner. A variety of hormones, including GnRH itself, estrogen, progesterone, inhibin, and testosterone have been shown to regulate GnRHR expression. Steroidogenic Factor-1 (SF-1), a member of the orphan nuclear receptor transcription factor family, regulates the expression of both the gonadotropin hormones in the pituitary and the steroidogenic enzymes in the gonads and adrenal gland, and provides a potential molecular mechanism for coordinate control of reproductive function. SF-1 binds to a gonadotrope-specific element (GSE) in the promoters of the gonadotropin hormones. Our studies involved investigating whether SF- I plays a role in tissue-specific regulation of GnRHR gene expression. A genomic clone of the mouse GnRHR gene contains a putative SF- I site at about -15 relative to the translation start site. We demonstrate the presence of a factor with SF-1-like DNA-binding activity in the gonadotrope cell lines, αT3-1 and αT4, by gel retardation assays. DNasel footprinting reveals that the major DNA-binding activity in αT3-1 cells on the GnRHR promoter occurs at the SF-1-like site. The SF-1-like sequence specificity of the interaction is demonstrated by gel redardation and DNasel footprinting assays using specific and mutated oligonucleotides as competitors. Northern blot analysis suggests that GnRHR expression is not solely dependent on the presence of SF-1, as αT4 cells do not express GnRHR but a SF-1 transcript is seen in these cells. Promoter function was analysed by constructing plasmids containing 563 bp of the GnRHR gene 5' to the ATG translation start site linked to a luciferase reporter gene, followed by transfection of these constructs into different cell lines. In addition, a mutant construct containing a mutated SF-1 site was tested. We demonstrate that this 563 bp of the GnRHR gene contains strong promoter activity in both pituitary gonadotrope (αT3-1) and somatotrope (GH₃) cells, but not in non-pituitary (COS-1) cells. Thus promoter activity appears to be tissue specific but not gonadotrope specific. The presence of a mutated SF-1 site in the 563 bp GnRHR gene fragment did not significantly effect the promoter activity, showing that binding of SF-1 protein to this site is not necessary for high levels of GnRHR expression in the pituitary gonadotropes.
Style APA, Harvard, Vancouver, ISO itp.
40

Lopes, John. "The role of the chicken gonadotropin-releasing hormone receptor C-terminal tail in expression and coupling". Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/26761.

Pełny tekst źródła
Streszczenie:
The role of the carboxy terminal tail of the chicken gonadotropin-releasing hormone receptor was determined by testing the activity of a series of chicken gonadotropinreleasing hormone receptors with progressive deletions in their carboxyl terminus. The 55 amino acid carboxy terminal tail of the chicken gonadotropin-releasing hormone receptor was progressively truncated, resulting in cS320STOP, cR330STOP, cS337STOP, cS346STOP, cT35ISTOP, cD356STOP, cS366STOP and cC375STOP truncated mutants, which were all tested in parallel with the wild type chicken gonadotropin-releasing hormone receptor. Truncation of the entire carboxy terminal tail from the chicken gonadotropin-releasing hormone receptor, cS320STOP abolished gonadotropin-releasing hormone binding and gonadotropin-releasing hormone-induced inositol phosphate production. The loss of gonadotropin-releasing hormone binding by the cS320STOP-truncated mutant suggests that this receptor is possibly not expressed on the cell membrane, which might be due to improper receptor folding by cS320STOP. The carboxy terminal tail of the chicken gonadotropin-releasing hormone receptor might therefore be required for proper folding of newly formed chicken gonadotropin-releasing hormone receptors and expression of these receptors on the cell membrane. The cR330STOP mutant had a maximal gonadotropin-releasing hormone binding of ~12%, which is the lowest receptor expression detected. The amino acid region between P³¹⁹ and L³²⁹ might therefore play a role in receptor expression. Progressive increase in the carboxy terminal tail from L³²⁹ resulted in progressive increase in the receptor expression. Maximal gonadotropin-releasing hormone binding levels reached wild type levels at truncation of the cGnRHR at S³⁶⁶. These results indicate that the first 45 amino region, ie. between P³¹⁹ and S³⁶⁶ of the chicken gonadotropin-releasing hormone receptor carboxy terminal tail contains elements that promote receptor expression. Gonadotropin-releasing hormone-induced inositol phosphate production was enhanced for all the truncated receptors except cR330STOP and cS337STOP, though all the truncated receptors had coupling efficiency values larger than the wild type chicken gonadotropin-releasing hormone receptor. This enhanced inositol phosphate production might be due to an increased coupling efficiency between the truncated chicken gonadotropin-releasing hormone receptors and the aq111-type G-protein. However, none of the truncated chicken gonadotropin-releasing hormone receptors have left-shifted EC50 values, indicating that coupling efficiency did not increase. Alternatively, a loss or retardation in receptor desensitization and/ or internalization for the truncated chicken gonadotropin-releasing hormone receptor mutants might be responsible for the enhanced gonadotropin-releasing hormone-induced inositol phosphate production by the truncated chicken gonadotropin-releasing hormone receptors. The chicken gonadotropin-releasing hormone receptor has a highly conserved cysteine residue in position 328 that might be palmitoylated. Replacing this cysteine in the chicken gonadotropin-releasing hormone receptor with an alanine [cC328A] increased receptor expression 2 fold, reduced maximal inositol phosphate production to ~69% and severely impaired coupling efficiency to 30% relative to the wild type levels. This finding indicates that C³²⁸ might be palmitoylated and is required for receptor coupling. In conclusion, the ammo terminal region of the chicken gonadotropin-releasing hormone receptor carboxy terminal tail increases receptor expression, either by affecting the transport of newly synthesized chicken gonadotropin-releasing hormone receptors to the plasma membrane and/or the proper folding of this receptor. The intracellular carboxy terminal tail of the chicken gonadotropin-releasing hormone receptor might play a negative role in G-protein coupling. However, the enhanced inositol phosphate production from the truncated chicken gonadotropin-releasing hormone receptors could be due to reduced internalization and/ or desensitization of the carboxy terminal truncated receptors. Point-mutation of C³²⁸ to A resulted in decreased coupling suggesting that C³²⁸ may be a palmitoylation site and might play a role in coupling or desensitization.
Style APA, Harvard, Vancouver, ISO itp.
41

Sadie, Hanel. "Interaction of SF-1 and Nur77 proteins from a gonadotrope cell line with the promoter of the GnRH receptor gene : implications for gene regulation". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52307.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--Stellenbosch University, 2001.
ENGLISH ABSTRACT: The regulation of gonadotropin releasing hormone (GnRH) receptor numbers in the pituitary is a crucial control point in reproduction. Pituitary sensitivity to GnRH can be directly correlated with GnRH receptor levels, which can be regulated at transcriptional and post-transcriptional level. The proximal promoter of the mouse GnRH receptor gene contains two cis elements bearing the consensus sequence for a Steroidogenic Factor-l (SF -1) binding site. The distal site has previously been shown to be involved in basal and tissue-specific transcriptional regulation, whereas the function of the proximal site was not established. SF-I, a member of the nuclear receptor superfamily of transcription factors, is involved in the transcriptional regulation of a large number of genes involved in steroidogenesis and reproduction. The consensus SF-I binding site can serve as a binding site for several members of the nuclear receptor superfamily. The aim of this study was to investigate the binding of SF-I protein from the aT3-1 gonadotrope cell line to the two putative SF-I binding sites in the mouse GnRH receptor promoter in vitro, in order to provide supporting evidence for their functional roles in GnRH receptor gene regulation. It was shown by Western blotting that SF-I and Nur77, another nuclear receptor transcription factor, are both expressed in aT3-1 cells, in a manner that is influenced by cell culture conditions. Gel mobility shift assays using specific antibodies showed that both SF-I and Nur77 protein in aT3-1 nuclear extracts bind to both sites in a mutually exclusive fashion. As shown by competition assays using mutated versions of the two sites, Nur77 protein had different base pair requirements than that of SF-I protein for binding to the sites. Additionally, SF-I mRNA was shown by Northern blotting to be increased in aT3-1 cells in response to stimulation of the Protein Kinase A (PKA) pathway by forskolin. These results highlight unexpected degeneracy in so-called "consensus" nuclear receptor binding sites. Furthermore, since Nur77 protein is involved in the stress response of the hypothalamic-pituitary-adrenal (HPA) axis, the unexpected presence of Nur77 protein in a gonadotrope cell line has potentially important implications for cross-talk between the HPA and hypothalamic-pituitary-gonadal (HPG) axes.
AFRIKAANSE OPSOMMING: Daar bestaan 'n direkte verband tussen pituïtêre sensitiwiteit vir gonadotropien-vrystellingshormoon (GnRH) en GnRH-reseptorvlakke Die regulering van GnRH-reseptorvlakke op transkripsionele en post-transkripsionele vlak in die pituïtêre klier is belangrik by die beheer van voortplantingsfunksies. Die proksimale promotor van die GnRH-reseptorgeen in die muis bevat twee cis elemente met die konsensus volgorde vir 'n Steroidogenic Factor-l (SF-I) bindingsetel. Die distale element is betrokke by basale en weefsel-spesifieke transkripsionele regulering, maar die funksie van die proksimale element is nog nie vasgestel nie. SF-1 is 'n lid van die superfamilie van selkernreseptore en is betrokke by die transkripsionele regulering van gene verantwoordelik vir steroïedogenese en voortplanting. Die konsensus SF-I bindingsvolgorde kan dien as bindingsetel vir verskeie selkernreseptore. Ten einde 'n beter insig ten opsigte van die regulering van die GnRH reseptorgeen te verkry, is ondersoek ingestel na die binding van SF-I-proteïen, afkomstig van die aT3-1 pituïtêre gonadotroopsellyn, aan die twee moontlike SF-l bindingsetels in die GnRH-reseptor promotor, in vitro. Die Western-klad metode het getoon dat beide SF-l en Nur77, 'n ander selkernreseptor-transkripsiefaktor, in die aT3-1 sellyn uitgedruk word. Die uitdrukking is afhanklik van selkultuurtoestande. Elektroforetiese mobiliteitsessais met spesifieke antiliggame het getoon dat SF-l en Nur77 proteïene in aT3-1 selkernproteïenekstraksies eksklusief aan beide bindingsetels bind. Nur77 proteïen benodig ander basispare as SF-l proteïen om aan die bindingsetels te bind. Hierdie resultate dui op onverwagse degenerasie in sogenaamde "konsensus" selkernreseptor-bindingsvolgordes. Die Northern-kladmetode het ook getoon dat SF-l mRNA vlakke in aT3-1 selle styg wanneer die proteïenkinase A (PKA) pad gestimuleer word met forskolin. Aangesien Nur77 proteïen betrokke is by die stres-respons van die hipotalamus-pituïtêre klier-adrenale (HP A) aksis, hou die onverwagse teenwoordigheid van Nur77 proteïen in 'n gonadotroop-sellyn potensieel belangrike inplikasies in vir kommunikasie tussen die HPA-aksis en die hipotalamus-pituïtêre klier-gonadale (HPG) aksis.
Style APA, Harvard, Vancouver, ISO itp.
42

Deus, Daiane Beneduzzi de. "Estudo do gene do receptor de GnRH (GNRHR) no hipogonadismo hipogonadotrófico isolado normósmico e atraso constitucional do crescimento e desenvolvimento". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/5/5135/tde-02012014-165016/.

Pełny tekst źródła
Streszczenie:
Mutações inativadoras do receptor de GnRH (GNRHR) são a causa genética mais frequente de hipogonadismo hipogonadotrófico isolado (HHI) normósmico. Os genes envolvidos da patogênese do HHI, incluindo o GNRHR, estão associados a um amplo espectro fenotípico, variando de HHI parcial a completo. O atraso constitucional do crescimento e desenvovimento (ACCD) poderia constituir uma variante fenotípica leve do HHI. Neste estudo avaliamos a frequência de mutações no gene GNRHR em pacientes com HHI normósmico e ACCD, bem como correlacionamos o genótipo/fenótipo nesses pacientes. Além disso, avaliamos o efeito fundador de uma mutação do GNRHR (p.R139H) frequente na população brasileira com HHI normósmico. Para esse estudo, selecionamos 116 pacientes com HHI normósmico e 51 com ACCD. Um grupo de 130 indivíduos com desenvolvimento puberal normal foi utilizado como controle. A região codificadora do gene GNRHR foi amplificada por PCR e sequenciada. Análises in silico e in vitro foram realizadas nas duas novas variantes (p.V134G e p.Y283H). Três marcadores de microssatélites (D4S409, D4S2387, D4S3018) foram amplificados e analisados nos pacientes portadores da mutação p.R139H, familiares e controles. No grupo de HHI normósmico, nove mutações (p.N10K,p.Q11K, p.Q106R, p.R139H, p.C200Y, p.R262Q, p.Y284C, p.Y283H, p.V134G) foram identificadas em onze pacientes (9,5%). Entre as mutações identificadas no GNRHR, duas foram descritas pela primeira vez no estudo atual: p.Y283H e p.V134G, cuja análise in vitro demonstrou inativação completa do receptor. Em geral, uma boa correlação genótipo-fenótipo foi observada. Pacientes portadores de mutações inativadoras apresentavam HHI completo e mutações com perda parcial de função causavam HHI parcial, incluindo dois pacientes que evoluíram com reversão do hipogonadismo após reposição androgênica. Por outro lado, não houve diferença fenotípica entre os casos com e sem mutação do GNRHR. Análise de ancestralidade genética da mutação p.R139H demonstrou que todos os casos brasileiros apresentaram o mesmo haplótipo, sugerindo que a mutação p.R139H possui um ancestral comum na população brasileira. Por outro lado o caso familial proveniente da Polônia apresentou apenas um marcador em comum com as famílias brasileiras e estudos mais abrangentes seriam necessários para determinar a origem da mutação p.R139H em indivíduos não Brasileiros. Na casuística de ACCD apenas a mutação p.Q106R foi identificada no gene GNRHR em heterozigose em um paciente. Em conclusão, o GNRHR foi o gene mais comumente afetado, apresentando uma boa correlação genótipo-fenótipo, e deve ser o primeiro candidato para análise genética em HHI normósmico. Os resultados sugerem que a mutação p.R139H possui um ancestral comum na população brasileira. Mutações no GNRHR parecem não estar envolvidas na patogênese do ACCD
GnRH receptor (GNRHR) inactivating mutations are the most common genetic cause of normosmic IHH. The genes involved in the IHH, including GNRHR, have been associated with a large phenotypic spectrum, varying from partial to complete IHH. Constitutional delay of growth and puberty (CDGP) might represent a mild phenotypic variant of IHH. In this study we investigated novel variants and characterized the frequency and phenotype-genotype correlation of GNRHR mutations in normosmic IHH and CDGP patients. Additionally, we determined de cause of the recurrence of GNRHR p.R139H mutation in patients with normosmic IHH. We studied 116 patients with normosmic IHH and 51 with CDGP. The control group was composed by 130 adults with normal pubertal development. The coding region of GNRHR was amplified and automatically sequenced. The two novel variants identified (p.Y283H, p.V134G) were submitted to in silico and in vitro analysis. Three microsatellite markers (D4S409, D4S2387, D4S3018) were amplified by PCR and analyzed in the patients with the p.R139H mutation. In the CDGP group, the previously described mutation p.Q106R was identified in the heterozygous state in one boy. The p.Q106R mutation has been identified in heterozygous state in individuals with normal pubertal development and does not appear be involved on the CDGP phenotype in this patient. In the normosmic IHH group, nine variants were identified (p.N10K, p.Q11K, p.Q106R, p.R139H, p.C200Y, p.R262Q, p.Y284C, p.Y283H, p.V134G) in eleven patients (9.5%). In vitro analysis of the novel variants p.Y283H and the p.V134G demonstrated that both of them cause complete loss of function of the receptor. The founder effect study revealed that all the p.R139H affected Brazilian patients presented the same haplotype, suggesting that the this mutation has a common ancestor in the Brazilian population. Nevertheless the affected Polish family presented a different haplotype, with only one marker in common with the Brazilian families and further studies would be necessary to determine the origin of the p.R139H mutation in the European population. In conclusion this study demonstrated that GNRHR was the most commonly affected gene in normosmic IHH, with a good genotype-phenotype correlation, and should be the first candidate gene for genetic screening in this condition. The results of the founder effect study suggested that the p.R139H mutation has a common ancestor in the Brazilian population. Finally, mutations in the GNRHR do not appear to be involved in the pathogenesis of CDGP
Style APA, Harvard, Vancouver, ISO itp.
43

Pawson, Adam James. "A mutational analysis of the roles of cytoplasmic domains of the gonadotropin-releasing hormone receptor in coupling and internalization". Doctoral thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/26779.

Pełny tekst źródła
Streszczenie:
The G protein-coupled receptor (GPCR) family is the largest group of homologous proteins in the human genome. GPCRs are of prime physiological and medical importance as the actions of a wide range of hormones and drugs are mediated by these receptors. The gonadotropin-releasing hormone (GnRH) receptor is a member of the GPCR family, and plays a central role in the reproductive system. GnRH analogues are used therapeutically in a number of human disorders. All GPCRs contain 7 largely α-helical transmembrane domains. An arginine residue located at the cytosolic boundary of the third transmembrane domain is conserved in all members of the rhodopsin-like subfamily of GPCRs, and is nearly always preceded by an acidic residue (DR motif). This arginine has been proposed to play a critical role in receptor activation. In this thesis, the effects of mutating these residues (Asp¹³⁸ and Arg¹³⁹ respectively, in the mouse GnRH receptor) to neutral amide residues, on coupling of the mouse GnRH receptor, were examined. In addition, the relationship of coupling to internalization in these mutant receptors was explored.
Style APA, Harvard, Vancouver, ISO itp.
44

White, Colin D. "Dissection of GnRH receptor-G protein coupling". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3885.

Pełny tekst źródła
Streszczenie:
Hypothalamic gonadotropin-releasing hormone (GnRH) (GnRH I) is the central regulator of the mammalian reproductive system. Most vertebrates studied also possess a second form of GnRH, GnRH II. GnRH I acts on its cognate G proteincoupled receptor (GPCR) on pituitary gonadotropes and activates Gq/11-mediated signalling pathways to stimulate the biosynthesis and the release of luteinising hormone (LH) and follicle-stimulating hormone (FSH). Both GnRHs have also been suggested to inhibit cellular proliferation, an action which has largely been proposed to be mediated by the coupling of the receptor to Gi/o. However, the range of G proteins activated by the GnRH receptor and the signalling cascades involved in inducing antiproliferation remain controversial. To delineate the G protein coupling selectivity of the mammalian GnRH receptor and to identify the signalling pathways involved in GnRH I-mediated cell growth inhibition, I examined the ability of the receptor to interact with Gq/11, Gi/o and Gs in Gαq/11 knockout MEF cells. My results indicate that the receptor is unable to interact with Gi/o but can signal through Gq/11. Additionally, my data do not support the suggestion of GnRH receptor-Gs interaction. Furthermore, I show that the GnRH Iinduced inhibition of cell growth is dependent on Gq/11, src and extracellular signal regulated kinase (ERK) but is independent of the activity of protein kinase C (PKC), Ca2+, jun-N-terminal kinase (JNK) or P38. Based on these findings and previous research within our group, I propose a mechanism whereby GnRH I may induce antiproliferation. Previous studies from our laboratory suggest that the GnRH receptor can adopt distinct active conformations in response to the binding of GnRH I and GnRH II. These data thus account for our hypothesis of ligand-induced selective signalling (LiSS). Given my previous results, I examined the ability of the GnRH receptor to couple to G12/13. My work indicates that the receptor can directly activate G12/13 and the downstream signalling cascades associated with this G protein family. Indeed, I provide evidence, in several cellular backgrounds, to suggest that GnRH receptor- G12/13-mediated signalling is involved in the regulation of GnRH-induced MAPK activity, SRE-driven gene transcription and cytoskeletal reorganisation. Furthermore, I propose a role for these G proteins in the transcriptional regulation of LHβ and FSHβ. Finally, I confirm previous results from our laboratory indicating that the GnRH receptor may interact with src Tyr kinase and show that GnRH I but not GnRH II may, independently of Gq/11, stimulate the Tyr phosphorylation and thus the activation of this protein. I propose that this differential signalling accounts for the distinct effects of GnRH I and GnRH II on cellular morphology and SREpromoted transcriptional activity. The research presented within this thesis provides evidence to refute published conclusions based on largely circumstantial experimental data, describes novel GnRH receptor signalling pathways and offers support for the concept of LiSS. It may assist in the development of new therapeutic compounds which selectively target one GnRH-mediated signalling pathway while bypassing others.
Style APA, Harvard, Vancouver, ISO itp.
45

Misu, Ryosuke. "Development of Neuropeptide Receptor Ligands for the Control of Reproductive Systems". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Santra, Sumana. "Studies On Cloning And Characterization Of GnRH Receptor From The Pituitary Of Bonnet Monkey (Macaca Radiata) And Functional Studies With The Antiserum To GnRH Receptor". Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/165.

Pełny tekst źródła
Streszczenie:
GnRH is a decapeptide hormone, which plays a major role in the process of mammalian reproduction. It is synthesized by the hypothalamus and binds to its cognate receptor on the pituitary, to bring about the release of gonadotropins LH and FSH. The gonadotropin releasing hormone receptor belongs to the family of G-protein coupled receptors that are characterized by the presence of seven putative transmembrane regions linked by extracellular and intracellular loops. It is a glycoprotein made up of 327 amino acids. During the last several years cloning of this receptor from a number of species has provided considerable insight into the molecular basis of interaction between GnRH and its receptor. The GnRH receptor has been cloned and sequenced from a large number of mammalian species such as human, sheep, cow, rat, mouse, etc. GnRH receptor is known to be unique among the G protein coupled receptors by virtue of the fact that it lacks a C terminal tail which has been implicated in coupling to G-proteins in several seven transmembrane domain receptors. Other members of this G-protein coupled receptor family such as the Luetinising hormone receptor, Follicle stimulating hormone receptor contain the characteristic cytoplasmic tail of about 68-72 amino acids, which is believed to possess a plasma membrane targeting signal sequence. Mutation studies carried out revealed that this C terminal sequence may be important in membrane trafficking in other G protein coupled receptors, since mutant forms of the receptor were not expressed on the plasma membrane. In many G-protein coupled receptors, part of the cytoplasmic tail is important for desensitization and internalization. However, the GnRH receptor is an exception in that its G protein coupling and desensitization functions are dependent on regions of the GnRH receptor other than the carboxy terminal cytoplasmic domain. It has been well established that binding of GnRH to its cognate receptor induces conformational change and it is suggested that the entire extracellular loop and transmembrane region are involved in binding and signal transduction. It is pertinent to note in this connection, that the use of both polyclonal and monoclonal antibodies has contributed significantly to the understanding of the interactions between ligands and their cognate receptors. Recent studies have established that there are several extrahypothalamic sites of production of GnRH, which include testes, lymphocytes, human placenta, mammary gland etc. Of these the production of GnRH in the human placenta has attracted attention in view of the demonstration that the placental chorionic gonadotropin production (CG) is regulated by placental GnRH. Our laboratory has been investigating the role of GnRH in regulation of Chorionic Gonadotropin (CG) using both in vitro human placental villi system and pregnant bonnet monkey as models. One important and interesting observation that has been made in our studies as well as by several others is that the affinity of the placental GnRH receptor to its ligand is quite low compared to the pituitary receptor. Available evidence indicates that the hypothalamic and the placental GnRH are similar in structure and consequently the difference in the affinity could be attributed to the differences between the pituitary and the placental GnRH receptor. Considering this, it will be ideal and of interest to compare the GnRH receptor from the pituitary and placenta of a species in which both in vitro and in vivo studies can be carried out. For obvious ethical reasons, in vivo studies cannot be carried out with humans. Since very little information is available on the GnRH receptor in non-human primates, as a first step we undertook the task of characterizing the GnRH receptor from the bonnet monkey pituitary and production of antibodies to it, since all the studies carried out so far with antibodies to GnRH receptor have employed antibodies generated to a small stretch of peptide in the extracellular region. Thus the objective of the present study is to clone and express the GnRH receptor from the pituitary of the bonnet monkey {Macaco radiata), raise antibodies and to characterize them functionally. Chapter 1 provides a general review of information currently available regarding structure of GnRH and its receptor as well as the results of studies using antibodies directed to the GnRH receptor fragments. Chapter 2 deals with the partial cloning of the GnRH receptor from the pituitary of the bonnet monkeys by the technique of RT-PCR. We were able to amplify a PCR fragment of 959bp corresponding to the almost full-length GnRH receptor sequence. Southern blot analysis using the full length human pituitary GnRH receptor cDNA as the probe revealed that the 959 bp product was able to hybridize to the probe, confirming the authenticity of the PCR product. Restriction mapping with three different restriction enzymes also gave the expected pattern. Additional evidence was obtained by cloning of this PCR product into expression vector pGEX 5X-2 and sequencing a number of clones. The sequences obtained were then subjected to homology search with other known GnRH receptor sequences available in the Genebank. The sequence was found to be 97% homologous to the human pituitary GnRH receptor sequence and also showed a high degree of homology with the GnRH receptor from other species. Although antibodies have been raised to the GnRH receptor by immunizing rabbits with synthetic peptides corresponding to extracellular regions of the receptor, most of the antibodies have a very low affinity towards the native receptor. Also results of studies using these antibodies indicated that the peptide antibodies failed to recognize the native receptor. Initially we made efforts to express the full-length receptor in E.coli BL21 cells. However, since we were not successful in our attempts to express the full length, we resorted to express a smaller fragment which corresponded to amino acids 164-266, that encompassed one extracellular, two transmembrane and one intracellular domain. Before we proceeded ahead to express this fragment, the authenticity of this fragment was established by southern hybridization, restriction mapping as well as sequencing. This monkey pituitary GnRH receptor fragment corresponding to 315 bp was cloned in the expression vector pGEX 5X-2 and the protein corresponding to this region was overexpressed as a recombinant fusion protein in E.coli. BL21 plys S strain. Overexpression of the protein was induced using IPTG and the lysate was subjected to electrophoresis on a SDS-PAGE gel A signal corresponding to 37Kda, which is in agreement with the expected size (GST portion of the fusion protein plus the peptide) was observed following induction with IPTG. The overexpressed protein was found to be localized to the inclusion bodies, and this was purified from inclusion bodies by cutting out the band corresponding to the overexpressed protein from the preparative SDS-PAGE gels and the protein was eluted out by electroelution. Sera from the rabbits, which were immunized with the overexpressed protein, were checked for the presence of antibodies by ELISA, using the purified protein as the antigen. After ascertaining the presence of high titre antibodies in the sera of immunized animals, the serum was used to detect the presence of GnRH receptor in the membrane preparations from rat pituitary, monkey pituitary and human placenta using the technique of western blotting. A signal corresponding to 68Kda was found in all the cases and the specificity of this signal was established by preabsorption of the antisemrn with pituitary and placental membrane preparations, which resulted in decrease in the intensity of the signal. . The antiserum was also used to localize the GnRH receptor in different tissues such as first trimester and term human placenta, sheep pituitary, monkey placenta, human pituitary and rat prostate by the technique of immunotlourescence using the confocal microscope. The results of the above studies are presented in Chapter 3. Chapter 4 deals with the functional studies carried out using the antiserum to GnRH receptor in an in vivo system using male and female rats. As discussed earlier, all the reported studies on use of antibodies to GnRH receptor have employed a small region of the extracellular portion of the receptor for the production of antibodies. However, the antibodies in the present study have been directed towards a larger fragment, and considering this, it was of interest to evaluate the effect of these antibodies in in vivo as well as in vitro systems. Two approaches were used to evaluate the effect of antibodies, namely passive and active immunization i.e. administration of antiserum to GnRH receptor fragment raised in rabbits and also immunization with the overexpressed recombinant GnRH receptor protein. This study was carried out in both immature as well as adult male rats and also in the cycling female rats. Several parameters were monitored, which included various androgen dependent parameters in the male reproductive tissue i.e. body weight, testes weight as well as the weight of accessory sex organ-the prostate and also the fertility status. In the female rats the changes in the weight of the ovary, uterus, serum E2 and P4 were monitored. No effect on the body weight, testis weight or prostate weight was noticed in the treated animals compared to the controls. Furthermore, an indication that the hypothalamo-pituitary-gonadal axis was not compromised in the passively immunized animals was obtained from the observation that there was no decrease in the serum and testicular testosterone levels. In fact, there was a significant increase in the serum and testicular testosterone levels. This suggested the possibility that the antibodies are exerting a ßßstimulatory effect. To ascertain this possibility, two androgen dependent parameters namely the levels of mRNA for TGF ß, which is androgen repressed gene and Prostatein Cl, which is an androgen induced gene were monitored. It was observed that there was a significant increase in the steady state mRNA level of Prostatein Cl in GnRH antiserum treated animals and a corresponding decrease in TGFß mRNA levels. Active immunization study with injection of the recombinant protein was also carried out in adult male rats. All immunized animals responded to the immunization by producing high titre antibodies, the presence of which was detected by ELISA using the recombinant protein as the antigen. The results of the study revealed that there was no change in the body weight, testis weight or prostate weight. However, there was a significant increase in the serum and testicular testosterone levels compared to the control animals. Fertility studies indicated that all the animals were fertile. However, as in the case of passive immunization studies, an increase in the mRNA levels of Prostatein Cl was noted although the level of TGFß, which is an androgen repressed gene could not be monitored in this case due to the very high levels of endogenous androgens present in these animals. Thus it appears that the antibodies produced both in rabbits as well as in rats were stimulatory in nature probably indicating some specific characteristic of the region of the receptor to which the antibody has been raised. The results obtained in the present study are of significance considering the fact that studies using the antibodies to LH receptor and TSH receptor, both of which belong to the G-protein coupled family also report production of stimulatory antibodies. Active immunization studies using the GnRH receptor protein in the female rats also revealed that the antibodies were not compromising the hypothalamo-pituitary-gonadal axis. Accordingly, there was no decrease in the serum or ovarian levels of estradiol 17ß and progesterone and there was no difference in the ovarian weight. However, a significant decrease in the uterine weight and difference in the histology of the uterus of the immunized animals was observed. This is of significance, considering the fact that the presence of the GnRH receptor has been reported in the uterus also. In an attempt to develop an in vitro system to monitor the effect of GnRH receptor antibody, an in vitro incubation system with the human placental villi, which is known to produce both GnRH and hCG was standardized. Sensitive ELISA and RIA were developed for GnRH and hCG, respectively to monitor their levels.The results of the studies on the effect of addition of GnRH receptor antibody to the immunoreactive hCG levels in the placental incubation medium are presented in Chapter 5. In addition, advantage was taken of the report of the presence of the specific receptors for GnRH in the Leydig cells of the rats, to evaluate the effect of the GnRH receptor antibodies on the function of leydig cells. Results of studies in which the effect of addition of GnRH receptor antibodies on the testosterone production by purified rat Leydig cells were monitored revealed that there was no inhibitory effect. Finally in the Chapter 6, a general discussion and critical evaluation of the results obtained in the study, in light of similar studies reported in literature are presented.
Style APA, Harvard, Vancouver, ISO itp.
47

Armstrong, Stephen Paul. "Pulsatile Gonadotrophin-releasing Hormone Receptor Signalling". Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Coetsee, Marla Catherine. "Ligand-induced selective signalling at the gonadotrophin releasing hormone receptor". Doctoral thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/3123.

Pełny tekst źródła
Streszczenie:
Includes abstract.
Includes bibliographical references (p. 179-202).
The pituitary gonadotrophin releasing hormone (GnRH) receptor regulates reproduction by activation of Gq/11 proteins. In contrast, GnRH receptors at extrapituitary sites induce anti-proliferative effects that do not correlate with Gq/11 activation. We propose that the two endogenous ligands, GnRH I and GnRH II, and certain antagonists selectively activate distinct signalling pathways by stabilisation of distinct active conformations of the GnRH receptor, a concept termed ligand-induced selective signalling (LiSS). This dissertation has investigated LiSS at the GnRH receptor using several approaches. The sequences of GnRH I and II differ in positions 5, 7 and 8. I investigated the interaction of position 5 of GnRH I and GnRH II with Tyr6.58 of the receptor. Compared with the Leu and Ala mutants, the Tyr6.58Phe mutant had higher affinity for native GnRHs, but not Ala5-substituted GnRHs, suggesting that Tyr5 of GnRH I and His5 of GnRH II interact with Tyr6.58 by aromatic interactions. Our molecular models show that GnRHs interact with distinct rotamer conformations of Tyr6.58. This is supported by the Tyr6.58Leu receptor, which makes compensatory interactions that improve binding affinity and receptor activation for GnRH II, but not GnRH I, compared with the Tyr6.58Ala receptor. Together these results suggest that GnRHs stabilise distinct receptor active conformations. To identify the most proximal signalling proteins that mediate GnRH receptordependent anti-proliferative effects, I established a range of [35S]GTPS binding assays. I confirmed that the GnRH receptor activates Gq/11, but in contrast to previous proposals, my results show that the GnRH receptor cannot directly activate Gi. I subsequently identified a novel GnRH receptor signalling partner, the SH2 domaincontaining phosphatase 2 (SHP-2). I propose that SHP-2 mediates the antiproliferative effects of the receptor. I show that the SHP-2 pathway is activated independently of Gq/11 and suggest that signalling occurs by a direct interaction of SHP-2 and src with the GnRH receptor. Furthermore, this pathway is activated by a classical Gq/11 antagonist or by Gq/11-uncoupled GnRH receptor mutants. My results provide convincing evidence supporting LiSS at the GnRH receptor and may facilitate development of therapeutics with increased signalling specificity at this receptor.
Style APA, Harvard, Vancouver, ISO itp.
49

Gardner, Samantha. "Gonadotropin-releasing hormone targets Wnt signalling". Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29112.

Pełny tekst źródła
Streszczenie:
This thesis describes a potential mechanism by which GnRH promotes the nuclear accumulation of β-catenin, activation of TCF-dependent transcription and up-regulation of Wnt target genes, c-Jun, Fra-1, Cyclin D1 and c-Mye. GnRH-induced nuclear accumulation of β-catenin and activation of β-catenin/TCF-dependent transcription was found to be dependent on a pathway utilising Gq-Phospholipase C (PLC)-Diacylglycerol (DAG)/Protein kinase C (PKC), and was found to be specifically dependent on the PKC δ isoform. GnRH was found to mediate the inactivation of Glycogen Synthase Kinase-3 (GSK-3), a protein serine/threonine kinase that regulates β-catenin degradation within the canonical Wnt signalling pathway. These results were observed in HEK293/GnRH receptor expressing cells and have been recapitulated in LβT2 and αT3-1 mouse gonadotrope cells, and then extended to various peripheral cell lines, sub-cultured prostate cells and whole prostate organ cultures. A potential mechanism of non-canonical Wnt/Ca2+ pathway activation by GnRH is described. GnRH was found to activate NFAT, a potential effecter of the non-canonical Wnt/Ca2+ pathway. GnRH-induced NFAT activation was found to be dependent on important mediators of the non-classical Wnt/Ca2+ pathway, including Gq, Ca2+, Calcineurin and PKC δ.  Intriguingly, by expression of a dominant negative TCF construct, GnRH-induced NFAT activation was found to be TCF-dependent, thereby implicating TCF in targeting both Wnt/β-catenin and Wnt/Ca2+ signalling. This novel finding suggests that a TCF-NFAT interaction may exist that functions either, to inhibit β-catenin/TCF-dependent transcription through competition for nuclear TCF, or to synergistically regulate TCF- and NFAT-target gene expression.
Style APA, Harvard, Vancouver, ISO itp.
50

李繼仁 i Kai-yan Lee. "Regulation of gonadotropin-releasing hormone and gonadotropin in goldfish, carassius auratus". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31214332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii