Artykuły w czasopismach na temat „Glyceraldehyde-3-phosphate (GAP)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Glyceraldehyde-3-phosphate (GAP)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yugueros, Javier, Alejandro Temprano, Beatriz Berzal, Marı́a Sánchez, Carmen Hernanz, José Marı́a Luengo i Germán Naharro. "Glyceraldehyde-3-Phosphate Dehydrogenase-Encoding Gene as a Useful Taxonomic Tool for Staphylococcusspp." Journal of Clinical Microbiology 38, nr 12 (2000): 4351–55. http://dx.doi.org/10.1128/jcm.38.12.4351-4355.2000.
Pełny tekst źródłaYang, Shao-Qing, Jian Deng, Qian-Qian Wu, Heng Li i Wen-Yun Gao. "A Specific Process to Purify 2-Methyl-D-Erythritol-4-Phosphate Enzymatically Converted from D-Glyceraldehyde-3-Phosphate and Pyruvate". Natural Product Communications 10, nr 2 (luty 2015): 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000233.
Pełny tekst źródłaKomati Reddy, Gajendar, Steffen N. Lindner i Volker F. Wendisch. "Metabolic Engineering of an ATP-Neutral Embden-Meyerhof-Parnas Pathway in Corynebacterium glutamicum: Growth Restoration by an Adaptive Point Mutation in NADH Dehydrogenase". Applied and Environmental Microbiology 81, nr 6 (9.01.2015): 1996–2005. http://dx.doi.org/10.1128/aem.03116-14.
Pełny tekst źródłaScott, Israel M., Gabriel M. Rubinstein, Farris L. Poole, Gina L. Lipscomb, Gerrit J. Schut, Amanda M. Williams-Rhaesa, David M. Stevenson, Daniel Amador-Noguez, Robert M. Kelly i Michael W. W. Adams. "The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis". Journal of Biological Chemistry 294, nr 25 (16.05.2019): 9995–10005. http://dx.doi.org/10.1074/jbc.ra118.007120.
Pełny tekst źródłaVellanki, Ravi N., Ravichandra Potumarthi, Kiran K. Doddapaneni, Naveen Anubrolu i Lakshmi N. Mangamoori. "Constitutive Optimized Production of Streptokinase inSaccharomyces cerevisiaeUtilizing Glyceraldehyde 3-Phosphate Dehydrogenase Promoter ofPichia pastoris". BioMed Research International 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/268249.
Pełny tekst źródładel Castillo, Teresa, Estrella Duque i Juan L. Ramos. "A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas putida To Yield a Common Central Intermediate". Journal of Bacteriology 190, nr 7 (1.02.2008): 2331–39. http://dx.doi.org/10.1128/jb.01726-07.
Pełny tekst źródłaRisse, Karin, Karen Schlez, Tobias Eisenberg, Christina Geiger, Anna Balbutskaya, Osama Sammra, Christoph Lämmler i Amir Abdulmawjood. "Phenotypical and Genotypical Properties of an Arcanobacterium pluranimalium Strain Isolated from a Juvenile Giraffe (Giraffa camelopardalis reticulata)". Journal of Veterinary Medicine 2014 (30.04.2014): 1–5. http://dx.doi.org/10.1155/2014/408724.
Pełny tekst źródłaKormanec, J., A. Lempel'ova, R. Novakova, B. ReZuchova i D. Homerova. "Expression of the Streptomyces aureofaciens glyceraldehyde-3-phosphate dehydrogenase gene (gap) is developmentally regulated and induced by glucose". Microbiology 143, nr 11 (1.11.1997): 3555–61. http://dx.doi.org/10.1099/00221287-143-11-3555.
Pełny tekst źródłaGilboa, Rotem, Alan Joseph Bauer i Gil Shoham. "Crystallization and preliminary crystallographic analysis of glyceraldehyde 3-phosphate dehydrogenase from Sacchromyces cerevisiae (baker's yeast)". Acta Crystallographica Section D Biological Crystallography 54, nr 6 (1.11.1998): 1467–70. http://dx.doi.org/10.1107/s0907444997019720.
Pełny tekst źródłaMcFarlane, Ciaran R., Nita R. Shah, Burak V. Kabasakal, Blanca Echeverria, Charles A. R. Cotton, Doryen Bubeck i James W. Murray. "Structural basis of light-induced redox regulation in the Calvin–Benson cycle in cyanobacteria". Proceedings of the National Academy of Sciences 116, nr 42 (30.09.2019): 20984–90. http://dx.doi.org/10.1073/pnas.1906722116.
Pełny tekst źródłaCancilla, M. R., A. J. Hillier i B. E. Davidson. "Lactococcus lactis glyceraldehyde-3-phosphate dehydrogenase gene, gap: further evidence for strongly biased codon usage in glycolytic pathway genes". Microbiology 141, nr 4 (1.04.1995): 1027–36. http://dx.doi.org/10.1099/13500872-141-4-1027.
Pełny tekst źródłaHernández-Ochoa, Beatriz, Saúl Gómez-Manzo, Erick Alcaraz-Carmona, Hugo Serrano-Posada, Sara Centeno-Leija, Roberto Arreguin-Espinosa, Miguel Cuevas-Cruz i in. "Gene Cloning, Recombinant Expression, Characterization, and Molecular Modeling of the Glycolytic Enzyme Triosephosphate Isomerase from Fusarium oxysporum". Microorganisms 8, nr 1 (24.12.2019): 40. http://dx.doi.org/10.3390/microorganisms8010040.
Pełny tekst źródłaImber, Marcel, Nguyen Thi Thu Huyen, Agnieszka J. Pietrzyk-Brzezinska, Vu Van Loi, Melanie Hillion, Jörg Bernhardt, Lena Thärichen i in. "ProteinS-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap inStaphylococcus aureusUnder Hypochlorite Stress". Antioxidants & Redox Signaling 28, nr 6 (20.02.2018): 410–30. http://dx.doi.org/10.1089/ars.2016.6897.
Pełny tekst źródłaHomerová, D., O. Sprušanský, E. Kutejová i J. Kormanec. "Some features of DNA-binding proteins involved in the regulation of theStreptomyces aureofaciens gap gene, encoding glyceraldehyde-3-phosphate dehydrogenase". Folia Microbiologica 47, nr 4 (sierpień 2002): 311–17. http://dx.doi.org/10.1007/bf02818688.
Pełny tekst źródłaAlssahen, Mazen, Geoffrey Foster, Abdulwahed Ahmed Hassan, Jörg Rau, Christoph Lämmler, Ellen Prenger-Berninghoff, Tobias Eisenberg, Mathew Robinson i Amir Abdulmawjood. "First isolation of Arcanobacterium pinnipediorum from a grey seal pup (Halichoerus grypus) in the UK". Folia Microbiologica 67, nr 2 (26.11.2021): 291–97. http://dx.doi.org/10.1007/s12223-021-00932-7.
Pełny tekst źródłaGawriljuk, Victor Oliveira, Rick Oerlemans, Robin M. Gierse, Riya Jotwani, Anna K. H. Hirsch i Matthew R. Groves. "Structure of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Synthase in Complex with Butylacetylphosphonate". Crystals 13, nr 5 (27.04.2023): 737. http://dx.doi.org/10.3390/cryst13050737.
Pełny tekst źródłaConley, T. R., S. C. Park, H. B. Kwon, H. P. Peng i M. C. Shih. "Characterization of cis-acting elements in light regulation of the nuclear gene encoding the A subunit of chloroplast isozymes of glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana". Molecular and Cellular Biology 14, nr 4 (kwiecień 1994): 2525–33. http://dx.doi.org/10.1128/mcb.14.4.2525-2533.1994.
Pełny tekst źródłaConley, T. R., S. C. Park, H. B. Kwon, H. P. Peng i M. C. Shih. "Characterization of cis-acting elements in light regulation of the nuclear gene encoding the A subunit of chloroplast isozymes of glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana." Molecular and Cellular Biology 14, nr 4 (kwiecień 1994): 2525–33. http://dx.doi.org/10.1128/mcb.14.4.2525.
Pełny tekst źródłaAsanuma, Narito, i Tsuneo Hino. "Effects of pH and Energy Supply on Activity and Amount of Pyruvate Formate-Lyase in Streptococcus bovis". Applied and Environmental Microbiology 66, nr 9 (1.09.2000): 3773–77. http://dx.doi.org/10.1128/aem.66.9.3773-3777.2000.
Pełny tekst źródłaMeijer, W. G., E. R. van den Bergh i L. M. Smith. "Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR." Journal of bacteriology 178, nr 3 (1996): 881–87. http://dx.doi.org/10.1128/jb.178.3.881-887.1996.
Pełny tekst źródłaZhou, Jieyu, Luying Yang, Alicia DeColli, Caren Freel Meyers, Natalia S. Nemeria i Frank Jordan. "Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS". Proceedings of the National Academy of Sciences 114, nr 35 (14.08.2017): 9355–60. http://dx.doi.org/10.1073/pnas.1619981114.
Pełny tekst źródłaXiong, Liangrong, Hui Du, Keyan Zhang, Duo Lv, Huanle He, Junsong Pan, Run Cai i Gang Wang. "A Mutation in CsYL2.1 Encoding a Plastid Isoform of Triose Phosphate Isomerase Leads to Yellow Leaf 2.1 (yl2.1) in Cucumber (Cucumis Sativus L.)". International Journal of Molecular Sciences 22, nr 1 (30.12.2020): 322. http://dx.doi.org/10.3390/ijms22010322.
Pełny tekst źródłaWilding, E. Imogen, James R. Brown, Alexander P. Bryant, Alison F. Chalker, David J. Holmes, Karen A. Ingraham, Serban Iordanescu, Chi Y. So, Martin Rosenberg i Michael N. Gwynn. "Identification, Evolution, and Essentiality of the Mevalonate Pathway for Isopentenyl Diphosphate Biosynthesis in Gram-Positive Cocci". Journal of Bacteriology 182, nr 15 (1.08.2000): 4319–27. http://dx.doi.org/10.1128/jb.182.15.4319-4327.2000.
Pełny tekst źródłaKang, Tae Sun, Darren R. Korber i Takuji Tanaka. "Regulation of Dual Glycolytic Pathways for Fructose Metabolism in Heterofermentative Lactobacillus panis PM1". Applied and Environmental Microbiology 79, nr 24 (4.10.2013): 7818–26. http://dx.doi.org/10.1128/aem.02377-13.
Pełny tekst źródłaRichard, John P. "Enzymatic catalysis of proton transfer and decarboxylation reactions". Pure and Applied Chemistry 83, nr 8 (8.07.2011): 1555–65. http://dx.doi.org/10.1351/pac-con-11-02-05.
Pełny tekst źródłaLorite, María J., Ariana Casas-Román, Lourdes Girard, Sergio Encarnación, Natalia Díaz-Garrido, Josefa Badía, Laura Baldomá, Daniel Pérez-Mendoza i Juan Sanjuán. "Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli". Biology 12, nr 1 (26.12.2022): 44. http://dx.doi.org/10.3390/biology12010044.
Pełny tekst źródłaGITZENDANNER, M. A., i P. S. SOLTIS. "GENETIC VARIATION IN RARE AND WIDESPREAD LOMATIUM SPECIES (APIACEAE): A COMPARISON OF AFLP AND SSCP DATA". Edinburgh Journal of Botany 58, nr 2 (czerwiec 2001): 347–56. http://dx.doi.org/10.1017/s0960428601000671.
Pełny tekst źródłaAhmed, Marwa F. E., Mazen Alssahen, Christoph Lämmler, Bernd Köhler, Martin Metzner, Madeleine Plötz i Amir Abdulmawjood. "Identification of Trueperella bernardiae isolated from peking ducks (Anas platyrhynchos domesticus) by phenotypical and genotypical investigations and by a newly developed loop-mediated isothermal amplification (LAMP) assay". Folia Microbiologica 67, nr 2 (15.11.2021): 277–84. http://dx.doi.org/10.1007/s12223-021-00927-4.
Pełny tekst źródłaElkhalfi, Bouchra, José Miguel Araya-Garay, Jorge Rodríguez-Castro, Manuel Rey-Méndez, Abdelaziz Soukri i Aurelio Serrano Delgado. "Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000". Protein Expression and Purification 89, nr 2 (czerwiec 2013): 146–55. http://dx.doi.org/10.1016/j.pep.2013.02.005.
Pełny tekst źródłaRupasinghe, H. P. V., K. C. Almquist, G. Paliyath i D. P. Murr. "083 Is HMGR the Key Regulator of α-Farnesene Biosynthesis of Apple?" HortScience 35, nr 3 (czerwiec 2000): 403A—403. http://dx.doi.org/10.21273/hortsci.35.3.403a.
Pełny tekst źródłaArias-Álvarez, M., R. M. García-García, J. López-Tello, P. G. Rebollar, A. Gutiérrez-Adán i P. L. Lorenzo. "In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development". Reproduction, Fertility and Development 29, nr 9 (2017): 1667. http://dx.doi.org/10.1071/rd15553.
Pełny tekst źródłaValverde, F., M. Losada i A. Serrano. "Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803." Journal of bacteriology 179, nr 14 (1997): 4513–22. http://dx.doi.org/10.1128/jb.179.14.4513-4522.1997.
Pełny tekst źródłaTurner, R. T., S. N. Kapelner i T. C. Spelsberg. "Tissue-specific expression of bone proteins in femora of growing rats". American Journal of Physiology-Endocrinology and Metabolism 263, nr 4 (1.10.1992): E724—E729. http://dx.doi.org/10.1152/ajpendo.1992.263.4.e724.
Pełny tekst źródłaBRANLANT, Guy, i Christiane BRANLANT. "Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase". European Journal of Biochemistry 150, nr 1 (lipiec 1985): 61–66. http://dx.doi.org/10.1111/j.1432-1033.1985.tb08988.x.
Pełny tekst źródłaTurner, R. T., i T. C. Spelsberg. "Correlation between mRNA levels for bone cell proteins and bone formation in long bones of maturing rats". American Journal of Physiology-Endocrinology and Metabolism 261, nr 3 (1.09.1991): E348—E353. http://dx.doi.org/10.1152/ajpendo.1991.261.3.e348.
Pełny tekst źródłaAde, Julia, Katharina Hoelzle, Julia Stadler, Mathias Ritzmann i Ludwig E. Hoelzle. "Occurrence of Mycoplasma parvum in German Pigs of Different Age Groups Using a Novel Quantitative Real-Time PCR Assay". Pathogens 11, nr 11 (18.11.2022): 1374. http://dx.doi.org/10.3390/pathogens11111374.
Pełny tekst źródłaSchreiber, Wiebke, i Peter Dürre. "The glyceraldehyde-3-phosphate dehydrogenase of Clostridium acetobutylicum: isolation and purification of the enzyme, and sequencing and localization of the gap gene within a cluster of other glycolytic genes". Microbiology 145, nr 8 (1.08.1999): 1839–47. http://dx.doi.org/10.1099/13500872-145-8-1839.
Pełny tekst źródłaZou, Xiaojin, Zhanxiang Sun, Ning Yang, Lizhen Zhang, Wentao Sun, Shiwei Niu, Lining Tan, Huiyu Liu, Dario Fornara i Long Li. "Interspecific root interactions enhance photosynthesis and biomass of intercropped millet and peanut plants". Crop and Pasture Science 70, nr 3 (2019): 234. http://dx.doi.org/10.1071/cp18269.
Pełny tekst źródłaSchläpfer, Beatrice S., i Herbert Zuber. "Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus". Gene 122, nr 1 (grudzień 1992): 53–62. http://dx.doi.org/10.1016/0378-1119(92)90031-j.
Pełny tekst źródłaGoswami, Ashis Kumar, Hemanta Kumar Sharma, Neelutpal Gogoi i Bhaskar Jyoti Gogoi. "Network-Pharmacology and DFT Based Approach Towards Identification of Leads from Homalomena aromatica for Multi-Target In-Silico Screening on Entamoeba histolytica Proteins". Current Drug Therapy 15, nr 3 (14.10.2020): 226–37. http://dx.doi.org/10.2174/1574885514666190801102336.
Pełny tekst źródłaPark, Myong-Ok, Taeko Mizutani i Patrik R. Jones. "Glyceraldehyde-3-Phosphate Ferredoxin Oxidoreductase from Methanococcus maripaludis". Journal of Bacteriology 189, nr 20 (17.08.2007): 7281–89. http://dx.doi.org/10.1128/jb.00828-07.
Pełny tekst źródłaSprušanský, O., B. Řežuchová, D. Homerová i J. Kormanec. "Expression of the gap gene encoding glyceraldehyde-3-phosphate dehydrogenase of Streptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators The GenBank/EMBL/DDBJ accession number for the sequence described in this paper is U21191." Microbiology 147, nr 5 (1.05.2001): 1291–301. http://dx.doi.org/10.1099/00221287-147-5-1291.
Pełny tekst źródłaRubessa, M., S. Di Francesco, M. V. Suárez Novoa, L. Boccia, V. Longobardi, M. De Blasi i B. Gasparrini. "125 EFFECT OF GLYCERALDEHYDE-3-PHOSPHATE DURING BOVINE IN VITRO EMBRYO CULTURE". Reproduction, Fertility and Development 23, nr 1 (2011): 167. http://dx.doi.org/10.1071/rdv23n1ab125.
Pełny tekst źródłaSong, Jiaqi, Huanran Sun, Shuai Zhang i Changliang Shan. "The Multiple Roles of Glucose-6-Phosphate Dehydrogenase in Tumorigenesis and Cancer Chemoresistance". Life 12, nr 2 (12.02.2022): 271. http://dx.doi.org/10.3390/life12020271.
Pełny tekst źródłaZhang, Li, Meiruo Liu, Luyao Bao, Kristina I. Boström, Yucheng Yao, Jixi Li, Shaohua Gu i Chaoneng Ji. "Novel Structures of Type 1 Glyceraldehyde-3-phosphate Dehydrogenase from Escherichia coli Provide New Insights into the Mechanism of Generation of 1,3-Bisphosphoglyceric Acid". Biomolecules 11, nr 11 (22.10.2021): 1565. http://dx.doi.org/10.3390/biom11111565.
Pełny tekst źródłaZhang, Xuan, Yan-Bin Teng, Jian-Ping Liu, Yong-Xing He, Kang Zhou, Yuxing Chen i Cong-Zhao Zhou. "Structural insights into the catalytic mechanism of the yeast pyridoxal 5-phosphate synthase Snz1". Biochemical Journal 432, nr 3 (25.11.2010): 445–54. http://dx.doi.org/10.1042/bj20101241.
Pełny tekst źródłaRomani, Rita, Vincenzo Nicola Talesa i Cinzia Antognelli. "The Glyoxalase System Is a Novel Cargo of Amniotic Fluid Stem-Cell-Derived Extracellular Vesicles". Antioxidants 11, nr 8 (5.08.2022): 1524. http://dx.doi.org/10.3390/antiox11081524.
Pełny tekst źródłaErshov, Yuri V., R. Raymond Gantt, Francis X. Cunningham, i Elisabeth Gantt. "Isoprenoid Biosynthesis in Synechocystis sp. Strain PCC6803 Is Stimulated by Compounds of the Pentose Phosphate Cycle but Not by Pyruvate or Deoxyxylulose-5-Phosphate". Journal of Bacteriology 184, nr 18 (15.09.2002): 5045–51. http://dx.doi.org/10.1128/jb.184.18.5045-5051.2002.
Pełny tekst źródłaDeb, G. K., S. R. Dey, J. I. Bang, S. J. Cho, T. H. Kwon i I. K. Kong. "254 9-cis RETINOIC ACID INHIBITS CUMULUS CELL APOPTOSIS DURING IN VITRO MATURATION OF BOVINE OOCYTES THROUGH INHIBITION OF AP-1 PATHWAY". Reproduction, Fertility and Development 23, nr 1 (2011): 225. http://dx.doi.org/10.1071/rdv23n1ab254.
Pełny tekst źródłaGuitart Font, Emma, i Georg A. Sprenger. "Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in Escherichia coli Mutants through Expression of a Gene Variant (fsaAA129S) for Fructose 6-Phosphate Aldolase". International Journal of Molecular Sciences 21, nr 24 (17.12.2020): 9625. http://dx.doi.org/10.3390/ijms21249625.
Pełny tekst źródła