Artykuły w czasopismach na temat „Glutathione oxidized molecule”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Glutathione oxidized molecule”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tu, Benjamin P., i Jonathan S. Weissman. "Oxidative protein folding in eukaryotes". Journal of Cell Biology 164, nr 3 (2.02.2004): 341–46. http://dx.doi.org/10.1083/jcb.200311055.
Pełny tekst źródłaDarley-Usmar, V. M., A. Severn, V. J. O'Leary i M. Rogers. "Treatment of macrophages with oxidized low-density lipoprotein increases their intracellular glutathione content". Biochemical Journal 278, nr 2 (1.09.1991): 429–34. http://dx.doi.org/10.1042/bj2780429.
Pełny tekst źródłaIskusnykh, Igor Y., Anastasia A. Zakharova i Dhruba Pathak. "Glutathione in Brain Disorders and Aging". Molecules 27, nr 1 (5.01.2022): 324. http://dx.doi.org/10.3390/molecules27010324.
Pełny tekst źródłaYang, Wei-Yu, Jueting Zheng, Xia-Guang Zhang, Li-Chuan Chen, Yu Si, Fei-Zhou Huang i Wenjing Hong. "Charge transport through a water-assisted hydrogen bond in single-molecule glutathione disulfide junctions". Journal of Materials Chemistry C 8, nr 2 (2020): 481–86. http://dx.doi.org/10.1039/c9tc05686f.
Pełny tekst źródłaWei, Yongfeng, Zhuoqun Su, Xiao-feng Kang, Yanli Guo i Xiaoxue Mu. "Single-molecule transformation and analysis of glutathione oxidized and reduced in nanopore". Talanta 167 (maj 2017): 526–31. http://dx.doi.org/10.1016/j.talanta.2017.02.059.
Pełny tekst źródłaWróblewska, Joanna, Marcin Wróblewski, Iga Hołyńska-Iwan, Martyna Modrzejewska, Jarosław Nuszkiewicz, Weronika Wróblewska i Alina Woźniak. "The Role of Glutathione in Selected Viral Diseases". Antioxidants 12, nr 7 (22.06.2023): 1325. http://dx.doi.org/10.3390/antiox12071325.
Pełny tekst źródłaIvanov, V. V., Ye V. Shakhristova, Ye A. Stepovaya i V. V. Novitsky. "Effect of alloxan on glutathione system and oxidative protein modification in adipocytes of rats at experimental diabetes". Bulletin of Siberian Medicine 10, nr 3 (28.06.2011): 44–47. http://dx.doi.org/10.20538/1682-0363-2011-3-44-47.
Pełny tekst źródłaEwald, S. J., i P. H. Refling. "Co-immunoprecipitation of the Ly-5 molecule and an endogenous protease: a proteolytic system requiring a reducing agent and Ca2+1." Journal of Immunology 134, nr 4 (1.04.1985): 2513–19. http://dx.doi.org/10.4049/jimmunol.134.4.2513.
Pełny tekst źródłaMorgan, Bruce. "Reassessing cellular glutathione homoeostasis: novel insights revealed by genetically encoded redox probes". Biochemical Society Transactions 42, nr 4 (1.08.2014): 979–84. http://dx.doi.org/10.1042/bst20140101.
Pełny tekst źródłaAbdillah, Ariq, Prasad M. Sonawane, Donghyeon Kim, Dooronbek Mametov, Shingo Shimodaira, Yunseon Park i David G. Churchill. "Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge". Molecules 26, nr 3 (28.01.2021): 692. http://dx.doi.org/10.3390/molecules26030692.
Pełny tekst źródłaChai, Yuh-Cherng, i John J. Mieyal. "Glutathione and Glutaredoxin—Key Players in Cellular Redox Homeostasis and Signaling". Antioxidants 12, nr 8 (3.08.2023): 1553. http://dx.doi.org/10.3390/antiox12081553.
Pełny tekst źródłaAlphey, Magnus S., Janine König i Alan H. Fairlamb. "Structural and mechanistic insights into type II trypanosomatid tryparedoxin-dependent peroxidases". Biochemical Journal 414, nr 3 (27.08.2008): 375–81. http://dx.doi.org/10.1042/bj20080889.
Pełny tekst źródłaLi, Ben, Chufan Wang, Peng Lu, Yumeng Ji, Xufeng Wang, Chaoyang Liu, Xiaohu Lu, Xiaohan Xu i Xiaowei Wang. "IDH1 Promotes Foam Cell Formation by Aggravating Macrophage Ferroptosis". Biology 11, nr 10 (23.09.2022): 1392. http://dx.doi.org/10.3390/biology11101392.
Pełny tekst źródłaZhou, Xiaowen, i Yi Yao. "Unexpected Nephrotoxicity in Male Ablactated Rats Induced byCordyceps militaris: The Involvement of Oxidative Changes". Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/786528.
Pełny tekst źródłaJha, Saurabh, John W. Calvert, Mark R. Duranski, Arun Ramachandran i David J. Lefer. "Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling". American Journal of Physiology-Heart and Circulatory Physiology 295, nr 2 (sierpień 2008): H801—H806. http://dx.doi.org/10.1152/ajpheart.00377.2008.
Pełny tekst źródłaPatel, Shreenal, Syeed Hussain, Richard Harris, Sunita Sardiwal, John M. Kelly, Shane R. Wilkinson, Paul C. Driscoll i Snezana Djordjevic. "Structural insights into the catalytic mechanism of Trypanosoma cruzi GPXI (glutathione peroxidase-like enzyme I)". Biochemical Journal 425, nr 3 (15.01.2010): 513–22. http://dx.doi.org/10.1042/bj20091167.
Pełny tekst źródłaJo, Inseong, Nohra Park, In-Young Chung, You-Hee Cho i Nam-Chul Ha. "Crystal structures of the disulfide reductase DsbM from Pseudomonas aeruginosa". Acta Crystallographica Section D Structural Biology 72, nr 10 (15.09.2016): 1100–1109. http://dx.doi.org/10.1107/s2059798316013024.
Pełny tekst źródłaGargallo, Pedro, Juan C. Colado, Alavaro Juesas, Amaya Hernando-Espinilla, Nuria Estañ-Capell, Lidia Monzó-Beltran, Paula García-Pérez, Omar Cauli i Guillermo T. Sáez. "The Effect of Moderate- Versus High-Intensity Resistance Training on Systemic Redox State and DNA Damage in Healthy Older Women". Biological Research For Nursing 20, nr 2 (23.01.2018): 205–17. http://dx.doi.org/10.1177/1099800417753877.
Pełny tekst źródłaAnnia, Rodríguez-Hernández, Enrique Romo-Arévalo i Adela Rodríguez-Romero. "A Novel Substrate-Binding Site in the X-ray Structure of an Oxidized E. coli Glyceraldehyde 3-Phosphate Dehydrogenase Elucidated by Single-Wavelength Anomalous Dispersion". Crystals 9, nr 12 (26.11.2019): 622. http://dx.doi.org/10.3390/cryst9120622.
Pełny tekst źródłaMurnan, Kevin, Serena Tommasini-Ghelfi, Lisa Hurley, Corey Dussold, Daniel Wahl i Alexander Stegh. "EXTH-27. MOLECULAR CHARACTERIZATION AND PRECLINICAL DEVELOPMENT OF NOVEL SMALL MOLECULE INHIBITOR SPECIFIC FOR WILD-TYPE IDH1 FOR FERROPTOSIS INDUCTION IN GLIOBLASTOMA". Neuro-Oncology 23, Supplement_6 (2.11.2021): vi169. http://dx.doi.org/10.1093/neuonc/noab196.666.
Pełny tekst źródłaCeder, Anna Sophia, Sofi E. Eriksson, Emarndeena Haji Cheteh, Vladimir J. N. Bykov, Lars Abrahmsen i Klas G. Wiman. "Impact of combined MRP1 inhibition and mutant p53-targeting compound APR-246." Journal of Clinical Oncology 37, nr 15_suppl (20.05.2019): e14712-e14712. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14712.
Pełny tekst źródłaBadmus, Olufunto O., i Lawrence A. Olatunji. "Dexamethasone causes defective glucose-6-phosphate dehydrogenase dependent antioxidant barrier through endoglin in pregnant and nonpregnant rats". Canadian Journal of Physiology and Pharmacology 98, nr 10 (październik 2020): 667–77. http://dx.doi.org/10.1139/cjpp-2018-0351.
Pełny tekst źródłaDey, Prasanta, Amit Kundu, Ha Eun Lee, Babli Kar, Vineet Vishal, Suvakanta Dash, In Su Kim, Tejendra Bhakta i Hyung Sik Kim. "Molineria recurvata Ameliorates Streptozotocin-Induced Diabetic Nephropathy through Antioxidant and Anti-Inflammatory Pathways". Molecules 27, nr 15 (5.08.2022): 4985. http://dx.doi.org/10.3390/molecules27154985.
Pełny tekst źródłaVentimiglia, Leslie, i Bulent Mutus. "The Physiological Implications of S-Nitrosoglutathione Reductase (GSNOR) Activity Mediating NO Signalling in Plant Root Structures". Antioxidants 9, nr 12 (30.11.2020): 1206. http://dx.doi.org/10.3390/antiox9121206.
Pełny tekst źródłaTaniguchi, Misako, Nobuko Mori, Chizuru Iramina i Akira Yasutake. "Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver". Scientific World Journal 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/6382467.
Pełny tekst źródłaBavunoglu, Isil, Habibe Genc, Dildar Konukoglu, Hayriye Cicekci, Volkan Sozer, Remise Gelisgen i Hafize Uzun. "Oxidative stress parameters and inflammatory and immune mediators as markers of the severity of sepsis". Journal of Infection in Developing Countries 10, nr 10 (31.10.2016): 1045–52. http://dx.doi.org/10.3855/jidc.7585.
Pełny tekst źródłaSi, Meiru, Lei Zhang, Muhammad Tausif Chaudhry, Wei Ding, Yixiang Xu, Can Chen, Ali Akbar, Xihui Shen i Shuang-Jiang Liu. "Corynebacterium glutamicum Methionine Sulfoxide Reductase A Uses both Mycoredoxin and Thioredoxin for Regeneration and Oxidative Stress Resistance". Applied and Environmental Microbiology 81, nr 8 (13.02.2015): 2781–96. http://dx.doi.org/10.1128/aem.04221-14.
Pełny tekst źródłaCate, Shelby A., Tahsin Ozpolat, Junmei Chen, Colette Norby, Barbara A. Konkle, Jose A. Lopez i Xiaoyun Fu. "Quantitative Analysis of Small Molecular Weight Thiols and Disulfides in Blood from a Sickle Cell Disease Patient Infused with N-Acetyl-L-Cysteine". Blood 124, nr 21 (6.12.2014): 2662. http://dx.doi.org/10.1182/blood.v124.21.2662.2662.
Pełny tekst źródłaHomma, Takujiro, Sho Kobayashi i Junichi Fujii. "Methionine Deprivation Reveals the Pivotal Roles of Cell Cycle Progression in Ferroptosis That Is Induced by Cysteine Starvation". Cells 11, nr 10 (10.05.2022): 1603. http://dx.doi.org/10.3390/cells11101603.
Pełny tekst źródłaFaruqi, R. M., E. J. Poptic, T. R. Faruqi, C. De La Motte i P. E. DiCorleto. "Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression". American Journal of Physiology-Heart and Circulatory Physiology 273, nr 2 (1.08.1997): H817—H826. http://dx.doi.org/10.1152/ajpheart.1997.273.2.h817.
Pełny tekst źródłaOzpolat, Hasan Tahsin, Junmei Chen, Xiaoyun Fu, Shelby A. Cate, Jennie Le, Minhua Ling, Colette Norby, Dominic W. Chung, Barbara A. Konkle i Jose A. Lopez. "A Pilot Study of High-Dose N-Acetylcysteine Infusion in Patients with Sickle Cell Disease". Blood 128, nr 22 (2.12.2016): 1299. http://dx.doi.org/10.1182/blood.v128.22.1299.1299.
Pełny tekst źródłaXin, Yufeng, Yaxin Wang, Honglin Zhang, Yu Wu, Yongzhen Xia, Huanjie Li i Xiaohua Qu. "Cupriavidus pinatubonensis JMP134 Alleviates Sulfane Sulfur Toxicity after the Loss of Sulfane Dehydrogenase through Oxidation by Persulfide Dioxygenase and Hydrogen Sulfide Release". Metabolites 13, nr 2 (2.02.2023): 218. http://dx.doi.org/10.3390/metabo13020218.
Pełny tekst źródłaVatolin, Sergei, i Jaroslaw P. Maciejewski. "Novel Small Molecule Stimulants of Hematopoietic Stem Cells and Their Mode of Action". Blood 132, Supplement 1 (29.11.2018): 1302. http://dx.doi.org/10.1182/blood-2018-99-114838.
Pełny tekst źródłaCobbold, Christian, Miriam Windsor, James Parsley, Ben Baldwin i Thomas Wileman. "Reduced redox potential of the cytosol is important for African swine fever virus capsid assembly and maturation". Journal of General Virology 88, nr 1 (1.01.2007): 77–85. http://dx.doi.org/10.1099/vir.0.82257-0.
Pełny tekst źródłaXu, Xiuling, Katharina von Loehneysen, Deborah Noack, Andrew Vu i Jeff S. Friedman. "A Novel Approach for In Vivo Measurement of Red Cell Redox Status". Blood 116, nr 21 (19.11.2010): 2036. http://dx.doi.org/10.1182/blood.v116.21.2036.2036.
Pełny tekst źródłaRubino, Federico Maria. "The Redox Potential of the β-93-Cysteine Thiol Group in Human Hemoglobin Estimated from In Vitro Oxidant Challenge Experiments". Molecules 26, nr 9 (26.04.2021): 2528. http://dx.doi.org/10.3390/molecules26092528.
Pełny tekst źródłaKe, Yi-Yuan, Yuan-Tay Shyu i Sz-Jie Wu. "Evaluating the Anti-Inflammatory and Antioxidant Effects of Broccoli Treated with High Hydrostatic Pressure in Cell Models". Foods 10, nr 1 (15.01.2021): 167. http://dx.doi.org/10.3390/foods10010167.
Pełny tekst źródłaZimring, James C., Nicole H. Smith, Sean R. Stowell, Richard O. Francis, Eldad A. Hod, Jeanne E. Hendrickson, Larry J. Dumont, John Roback i Steven L. Spitalnik. "A Genetic Basis for Donor Variation in Generation of Prostaglandins and Leukotrienes in Stored RBCs Using a Mouse Model". Blood 120, nr 21 (16.11.2012): 844. http://dx.doi.org/10.1182/blood.v120.21.844.844.
Pełny tekst źródłaTomás-Simó, Patricia, Luis D’Marco, María Romero-Parra, Mari Carmen Tormos-Muñoz, Guillermo Sáez, Isidro Torregrosa, Nuria Estañ-Capell, Alfonso Miguel, José Luis Gorriz i María Jesús Puchades. "Oxidative Stress in Non-Dialysis-Dependent Chronic Kidney Disease Patients". International Journal of Environmental Research and Public Health 18, nr 15 (23.07.2021): 7806. http://dx.doi.org/10.3390/ijerph18157806.
Pełny tekst źródłaMandal, Subhrangshu, Moidu Jameela Rameez, Sumit Chatterjee, Jagannath Sarkar, Prosenjit Pyne, Sabyasachi Bhattacharya, Rahul Shaw i Wriddhiman Ghosh. "Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium Pusillimonas ginsengisoli SBSA". Microbiology 166, nr 4 (1.04.2020): 386–97. http://dx.doi.org/10.1099/mic.0.000890.
Pełny tekst źródłaRossi, Claudio, Alessandro Donati, Sergio Ulgiati i Maria Rosaria Sansoni. "Dynamic behaviour of oxidized glutathione in solution investigated by nuclear magnetic resonance". Canadian Journal of Chemistry 71, nr 4 (1.04.1993): 506–11. http://dx.doi.org/10.1139/v93-071.
Pełny tekst źródłaChebib, Soraya, i Wilfried Schwab. "Microscale Thermophoresis Reveals Oxidized Glutathione as High-Affinity Ligand of Mal d 1". Foods 10, nr 11 (11.11.2021): 2771. http://dx.doi.org/10.3390/foods10112771.
Pełny tekst źródłaTomin, Tamara, Matthias Schittmayer i Ruth Birner-Gruenberger. "Addressing Glutathione Redox Status in Clinical Samples by Two-Step Alkylation with N-ethylmaleimide Isotopologues". Metabolites 10, nr 2 (16.02.2020): 71. http://dx.doi.org/10.3390/metabo10020071.
Pełny tekst źródłaØstergaard, Henrik, Christine Tachibana i Jakob R. Winther. "Monitoring disulfide bond formation in the eukaryotic cytosol". Journal of Cell Biology 166, nr 3 (26.07.2004): 337–45. http://dx.doi.org/10.1083/jcb.200402120.
Pełny tekst źródłaKrezel, A., i W. Bal. "Coordination chemistry of glutathione." Acta Biochimica Polonica 46, nr 3 (30.09.1999): 567–80. http://dx.doi.org/10.18388/abp.1999_4129.
Pełny tekst źródłaAsanuma, Masato, i Ikuko Miyazaki. "Glutathione and Related Molecules in Parkinsonism". International Journal of Molecular Sciences 22, nr 16 (13.08.2021): 8689. http://dx.doi.org/10.3390/ijms22168689.
Pełny tekst źródłaHarwood, D. Tim, Anthony J. Kettle i Christine C. Winterbourn. "Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC–MS/MS method". Biochemical Journal 399, nr 1 (13.09.2006): 161–68. http://dx.doi.org/10.1042/bj20060978.
Pełny tekst źródłaChan, Alvin C. "Partners in defense, vitamin E and vitamin C". Canadian Journal of Physiology and Pharmacology 71, nr 9 (1.09.1993): 725–31. http://dx.doi.org/10.1139/y93-109.
Pełny tekst źródłaStio, M., T. Iantomasi, F. Favilli, P. Marraccini, B. Lunghi, M. T. Vincenzini i C. Treves. "Glutathione metabolism in heart and liver of the aging rat". Biochemistry and Cell Biology 72, nr 1-2 (1.01.1994): 58–61. http://dx.doi.org/10.1139/o94-010.
Pełny tekst źródłaYeh, H. I., C. H. Hsieh, L. Y. Wang, S. P. Tsai, H. Y. Hsu i M. F. Tam. "Mass spectrometric analysis of rat liver cytosolic glutathione S-transferases: modifications are limited to N-terminal processing". Biochemical Journal 308, nr 1 (15.05.1995): 69–75. http://dx.doi.org/10.1042/bj3080069.
Pełny tekst źródła