Artykuły w czasopismach na temat „Glioma Stem-like Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Glioma Stem-like Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ventosa, Maria, Padma Kadiyala, Stephen Carney, Maria Castro i Pedro Lowenstein. "GENE-32. SYNTHETIC LETHAL INTERACTIONS WITH IDH1R132H IN GLIOMA STEM-LIKE CELLS". Neuro-Oncology 21, Supplement_6 (listopad 2019): vi104. http://dx.doi.org/10.1093/neuonc/noz175.434.
Pełny tekst źródłaNikitin, Pavel V., Guzel R. Musina, Stanislav I. Pekov, Andrey A. Kuzin, Igor A. Popov, Artem Y. Belyaev, Gregory L. Kobyakov, Dmitry Y. Usachev, Viktor N. Nikolaev i Valentin P. Mikhailov. "Cell-Population Dynamics in Diffuse Gliomas during Gliomagenesis and Its Impact on Patient Survival". Cancers 15, nr 1 (26.12.2022): 145. http://dx.doi.org/10.3390/cancers15010145.
Pełny tekst źródłaBota, Daniela A., Daniela Alexandru, Stephen T. Keir, Darell Bigner, James Vredenburgh i Henry S. Friedman. "Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells' VEGF production and angiogenesis". Journal of Neurosurgery 119, nr 6 (grudzień 2013): 1415–23. http://dx.doi.org/10.3171/2013.7.jns1323.
Pełny tekst źródłaKim, Jun-Kyum, Hye-Min Jeon, Hee-Young Jeon, Se-Yeong Oh, Eun-Jung Kim, Xiong Jin, Se-Hoon Kim, Sung-Hak Kim, Xun Jin i Hyunggee Kim. "Conversion of glioma cells to glioma stem-like cells by angiocrine factors". Biochemical and Biophysical Research Communications 496, nr 4 (luty 2018): 1013–18. http://dx.doi.org/10.1016/j.bbrc.2017.02.076.
Pełny tekst źródłaAnand, Sumyuktha V., Alexander G. Skorput, Allan T. Gulledge, Isabella B. Fox, Damian A. Bonnin, Alison L. Young i Matthew C. Havrda. "Abstract 905: Targeting muscarinic acetylcholine receptors in glioma stem like cells". Cancer Research 82, nr 12_Supplement (15.06.2022): 905. http://dx.doi.org/10.1158/1538-7445.am2022-905.
Pełny tekst źródłaJadus, Martin, Neil Hoa, Lisheng Ge, Yurii Kuznetsov, Alex McPherson, Andrew Cornforth, Nabil Ahmed i Lawrence Lamb. "Gliomas display complex cell surface topographies that resist cytolytic lymphocytes but are reversed by using fascin siRNA (48.2)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 48.2. http://dx.doi.org/10.4049/jimmunol.186.supp.48.2.
Pełny tekst źródłaFENG, XING, QIN ZHOU, CHONG LIU i MEI-LING TAO. "Drug screening study using glioma stem-like cells". Molecular Medicine Reports 6, nr 5 (20.08.2012): 1117–20. http://dx.doi.org/10.3892/mmr.2012.1040.
Pełny tekst źródłaPersson, Anders I., i William A. Weiss. "The Side Story of Stem-like Glioma Cells". Cell Stem Cell 4, nr 3 (marzec 2009): 191–92. http://dx.doi.org/10.1016/j.stem.2009.02.004.
Pełny tekst źródłaLichti, Cheryl F., Norelle C. Wildburger, Alexander S. Shavkunov, Ekaterina Mostovenko, Huiling Liu, Erik P. Sulman i Carol L. Nilsson. "The proteomic landscape of glioma stem-like cells". EuPA Open Proteomics 8 (wrzesień 2015): 85–93. http://dx.doi.org/10.1016/j.euprot.2015.06.008.
Pełny tekst źródłaBerglar, Inka, Stephanie Hehlgans, Andrej Wehle, Caterina Roth, Christel Herold-Mende, Franz Rödel, Donat Kögel i Benedikt Linder. "CHRDL1 Regulates Stemness in Glioma Stem-like Cells". Cells 11, nr 23 (3.12.2022): 3917. http://dx.doi.org/10.3390/cells11233917.
Pełny tekst źródłaRao, Aparna, Xiaoran Zhang, Christopher Deibert, Paola Sette, Paola Grandi i Nduka Amankulor. "IDH Mutant Gliomas Escape Natural Killer Cell Immune Surveillance by Downregulation of NKG2D Ligand Expression". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 142.11. http://dx.doi.org/10.4049/jimmunol.196.supp.142.11.
Pełny tekst źródłaMandal, Ayan S., Rafael Romero-Garcia, Michael G. Hart i John Suckling. "Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma". Brain 143, nr 11 (listopad 2020): 3294–307. http://dx.doi.org/10.1093/brain/awaa277.
Pełny tekst źródłaRichard, Seidu A., i Kuugbee D. Eugene. "The Pivotal Immunomodulatory and Anti-Inflammatory Effect of Histone-Lysine N-Methyltransferase in the Glioma Microenvironment: Its Biomarker and Therapy Potentials". Analytical Cellular Pathology 2021 (27.10.2021): 1–15. http://dx.doi.org/10.1155/2021/4907167.
Pełny tekst źródłaMandal, Ayan, Rafael Romero-Garcia, Michael Hart i John Suckling. "NIMG-13. GENETIC, CELLULAR, AND CONNECTOMIC CHARACTERIZATION OF THE ADULT HUMAN BRAIN REGIONS COMMONLY PLAGUED BY GLIOMA". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii149. http://dx.doi.org/10.1093/neuonc/noaa215.626.
Pełny tekst źródłaFan, Yipu, Weikang Xue, Melitta Schachner i Weijiang Zhao. "Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor". Cancers 11, nr 1 (26.12.2018): 22. http://dx.doi.org/10.3390/cancers11010022.
Pełny tekst źródłaPantazopoulou, Vasiliki, Tracy Berg i Alexander Pietras. "TAMI-71. EFFECTS OF THE TREATED MICROENVIRONMENT ON GLIOMA CELL PROPERTIES IN AN ORGANOTYPIC BRAIN SLICE MODEL". Neuro-Oncology 23, Supplement_6 (2.11.2021): vi213. http://dx.doi.org/10.1093/neuonc/noab196.853.
Pełny tekst źródłaYu, Jennifer. "STEM-26. HYPOXIA REGULATES NOTCH TURNOVER IN GLIOMA STEM-LIKE CELLS". Neuro-Oncology 19, suppl_6 (listopad 2017): vi231. http://dx.doi.org/10.1093/neuonc/nox168.941.
Pełny tekst źródłaLo Cascio, Costanza, James McNamara, Ernesto Luna Melendez i Shwetal Mehta. "STEM-25. HDAC1 IS ESSENTIAL FOR GLIOMA STEM CELL SURVIVAL". Neuro-Oncology 21, Supplement_6 (listopad 2019): vi239. http://dx.doi.org/10.1093/neuonc/noz175.998.
Pełny tekst źródłaYAMAMURO, SHUN, YUTAKA OKAMOTO, EMIKO SANO, YUSHI OCHIAI, AKIYOSHI OGINO, TAKASHI OHTA, HIROYUKI HARA i in. "Characterization of glioma stem-like cells from human glioblastomas". International Journal of Oncology 47, nr 1 (7.05.2015): 91–96. http://dx.doi.org/10.3892/ijo.2015.2992.
Pełny tekst źródłaKang, Mi-Kyung, i Soo-Kyung Kang. "Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma". Journal of Life Science 17, nr 8 (30.08.2007): 1039–45. http://dx.doi.org/10.5352/jls.2007.17.8.1039.
Pełny tekst źródłaNayak, Sonali, Ashorne Mahenthiran, Yongyong Yang, Mark McClendon, Barbara Mania-Farnell, Charles David James, John A. Kessler i in. "Bone Morphogenetic Protein 4 Targeting Glioma Stem-Like Cells for Malignant Glioma Treatment: Latest Advances and Implications for Clinical Application". Cancers 12, nr 2 (24.02.2020): 516. http://dx.doi.org/10.3390/cancers12020516.
Pełny tekst źródłaXu, Zhong-Ye, Xiao-Qing Li, Song Chen, Yuan Cheng, Jin-Mu Deng i Zhi-Gang Wang. "Glioma Stem-like Cells are Less Susceptible than Glioma Cells to Sonodynamic Therapy with Photofrin". Technology in Cancer Research & Treatment 11, nr 6 (grudzień 2012): 615–23. http://dx.doi.org/10.7785/tcrt.2012.500277.
Pełny tekst źródłaD’Amico, Maria, i Francesca De Amicis. "Aberrant Notch signaling in gliomas: a potential landscape of actionable converging targets for combination approach in therapies resistance". Cancer Drug Resistance 5 (2022): 939–53. http://dx.doi.org/10.20517/cdr.2022.46.
Pełny tekst źródłaXI, Guifa, Ashorne Mahenthiran, Benjamin Best, Sonali Nayak, Cara Smith, Mark McClendon, Barbara Mania-Farnell i in. "EXTH-18. PEPTIDE NANO-STRUCTURES ENHANCE PEDIATRIC BRAIN TUMOR CHEMOTHERAPEUTIC EFFICACY". Neuro-Oncology 21, Supplement_6 (listopad 2019): vi86. http://dx.doi.org/10.1093/neuonc/noz175.352.
Pełny tekst źródłaMansour, Moustafa A., Masum Rahman, Ahmad A. Ayad, Arthur E. Warrington i Terry C. Burns. "P21 Overexpression Promotes Cell Death and Induces Senescence in Human Glioblastoma". Cancers 15, nr 4 (17.02.2023): 1279. http://dx.doi.org/10.3390/cancers15041279.
Pełny tekst źródłaShirakawa, Yuki, Kunimasa Ohta, Shunsuke Miyake, Ayumi Kanemaru, Akari Kuwano, Kou Yonemaru, Shota Uchino i in. "Glioma Cells Acquire Stem-like Characters by Extrinsic Ribosome Stimuli". Cells 10, nr 11 (1.11.2021): 2970. http://dx.doi.org/10.3390/cells10112970.
Pełny tekst źródłaHede, Sanna-Maria, Inga Nazarenko, Monica Nistér i Mikael S. Lindström. "Novel Perspectives on p53 Function in Neural Stem Cells and Brain Tumors". Journal of Oncology 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/852970.
Pełny tekst źródłaZHU, JIANHONG, HANDONG WANG, XIANGJUN JI, LIN ZHU, QING SUN, ZIXIANG CONG, YUAN ZHOU, HUANDONG LIU i MENGLIANG ZHOU. "Differential Nrf2 expression between glioma stem cells and non-stem-like cells in glioblastoma". Oncology Letters 7, nr 3 (16.12.2013): 693–98. http://dx.doi.org/10.3892/ol.2013.1760.
Pełny tekst źródłaYounis, Muhammad, Wang Faming, Zhao Hongyan, Tan Mengmeng, Song Hang i Yuan Liudi. "Iguratimod encapsulated PLGA-NPs improves therapeutic outcome in glioma, glioma stem-like cells and temozolomide resistant glioma cells". Nanomedicine: Nanotechnology, Biology and Medicine 22 (listopad 2019): 102101. http://dx.doi.org/10.1016/j.nano.2019.102101.
Pełny tekst źródłaPanditharatna, Eshini, Joana G. Marques, Tingjian Wang, Maria Trissal, Ilon Liu, Li Jiang, Alexander Beck i in. "DIPG-19. BAF COMPLEX PERTURBATION AS A NOVEL THERAPEUTIC OPPORTUNITY IN H3K27M PEDIATRIC GLIOMA". Neuro-Oncology 25, Supplement_1 (1.06.2023): i16—i17. http://dx.doi.org/10.1093/neuonc/noad073.066.
Pełny tekst źródłaZHANG, SUOJUN, RUIFAN XIE, FENG WAN, FEI YE, DONGSHENG GUO i TING LEI. "Identification of U251 glioma stem cells and their heterogeneous stem-like phenotypes". Oncology Letters 6, nr 6 (11.10.2013): 1649–55. http://dx.doi.org/10.3892/ol.2013.1623.
Pełny tekst źródłaMuthukrishnan, Sree Deepthi, Riki Kawaguchi, Pooja Nair, Alvaro Alvarado i Harley Kornblum. "Abstract B011: P300 histone acetyltransferase mediates glioma stem cell adaptive response to therapeutic stress". Cancer Research 82, nr 10_Supplement (15.05.2022): B011. http://dx.doi.org/10.1158/1538-7445.evodyn22-b011.
Pełny tekst źródłaAnand, Sumyuktha V., Min K. Lee, Alexander G. Skorput, Isabella B. Fox, Alison L. Young, Brock C. Christensen, Allan Gulledge i Matthew C. Havrda. "Abstract 5801: Inhibition of muscarinic acetylcholine receptors in glioma stem cells blocks tumor progression". Cancer Research 83, nr 7_Supplement (4.04.2023): 5801. http://dx.doi.org/10.1158/1538-7445.am2023-5801.
Pełny tekst źródłaGaiti, Federico, Ronan Chaligne, Dana Silverbush, Joshua Schiffman, Hannah Weisman, lloyd Kluegel, Simon Gritsch i in. "EPCO-14. DECIPHERING DIFFERENTIATION HIERARCHIES, HERITABILITY AND PLASTICITY IN HUMAN GLIOMAS VIA SINGLE-CELL MULTI-OMICS". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii72. http://dx.doi.org/10.1093/neuonc/noaa215.293.
Pełny tekst źródłaCosta, Barbara, Tanja Eisemann, Jens Strelau, Ingrid Spaan, Andrey Korshunov, Hai-Kun Liu, Peter Bugert, Peter Angel i Heike Peterziel. "Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on tumor cells". Blood Advances 3, nr 7 (4.04.2019): 1092–102. http://dx.doi.org/10.1182/bloodadvances.2018015966.
Pełny tekst źródłaTiburcio, Patricia, Mary Locke, Srivydia Bhaskara, Mahesh Chandrasekharan i Eric Huang. "STEM-25. DIFFERENTIAL REGULATION OF GLIOMA STEM-CELL MARKER NESTIN AND CD24 IN IDH-MUTANT GLIOMA". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii201. http://dx.doi.org/10.1093/neuonc/noaa215.842.
Pełny tekst źródłaParajuli, Prahlad, Mouli Mandalaparty, Chaya Brodie, Lawrence Lum, Archana Thakur i Sandeep Mittal. "Role of Th17/IL-17 inflammatory axis in the progression of malignant gliomas (P2095)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 170.4. http://dx.doi.org/10.4049/jimmunol.190.supp.170.4.
Pełny tekst źródłaSharma, Vivek, Deobrat Dixit, Sadashib Ghosh i Ellora Sen. "COX-2 regulates the proliferation of glioma stem like cells". Neurochemistry International 59, nr 5 (październik 2011): 567–71. http://dx.doi.org/10.1016/j.neuint.2011.06.018.
Pełny tekst źródłaBrooks, Lucy J., i Simona Parrinello. "Vascular regulation of glioma stem-like cells: a balancing act". Current Opinion in Neurobiology 47 (grudzień 2017): 8–15. http://dx.doi.org/10.1016/j.conb.2017.06.008.
Pełny tekst źródłaShirakawa, Yuki, Takuichiro Hide, Michiko Yamaoka, Yuki Ito, Naofumi Ito, Kunimasa Ohta, Naoki Shinojima, Akitake Mukasa, Hideyuki Saito i Hirofumi Jono. "Ribosomal protein S6 promotes stem‐like characters in glioma cells". Cancer Science 111, nr 6 (30.04.2020): 2041–51. http://dx.doi.org/10.1111/cas.14399.
Pełny tekst źródłaCampos, Benito, Feng Wan, Mohammad Farhadi, Aurélie Ernst, Felix Zeppernick, Katrin E. Tagscherer, Rezvan Ahmadi i in. "Differentiation Therapy Exerts Antitumor Effects on Stem-like Glioma Cells". Clinical Cancer Research 16, nr 10 (4.05.2010): 2715–28. http://dx.doi.org/10.1158/1078-0432.ccr-09-1800.
Pełny tekst źródłaFigueroa, Javier, Lynette M. Phillips, Tal Shahar, Anwar Hossain, Joy Gumin, Hoon Kim, Andrew J. Bean i in. "Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587". Cancer Research 77, nr 21 (30.08.2017): 5808–19. http://dx.doi.org/10.1158/0008-5472.can-16-2524.
Pełny tekst źródłaIsokpehi, Raphael D., Katharina C. Wollenberg Valero, Barbara E. Graham, Maricica Pacurari, Jennifer N. Sims, Udensi K. Udensi i Kenneth Ndebele. "Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells". Cancer Informatics 14 (styczeń 2015): CIN.S22058. http://dx.doi.org/10.4137/cin.s22058.
Pełny tekst źródłaJohnson, Kevin, Kevin Anderson, Djamel Nehar-Belaid, Frederick Varn, Amit Gujar, Elise Courtois, Paul Robson i in. "EPCO-13. IDENTIFYING REGULATORS OF GLIOMA CELL STATE DIVERSITY AND EVOLUTION VIA JOINT SINGLE NUCLEUS RNA AND CHROMATIN ACCESSIBILITY". Neuro-Oncology 24, Supplement_7 (1.11.2022): vii118. http://dx.doi.org/10.1093/neuonc/noac209.448.
Pełny tekst źródłaSuresh, Rahul, Sophie Fiola, Jamie Beaulieu i Roberto Diaz. "PATH-14. ALPHA CARDIAC ACTIN EXPRESSION IS OBSERVED IN AGGRESSIVE GLIOMA SUBTYPES AND GLIOBLASTOMA STEM CELLS". Neuro-Oncology 23, Supplement_6 (2.11.2021): vi117. http://dx.doi.org/10.1093/neuonc/noab196.466.
Pełny tekst źródłaGong, X., P. H. Schwartz, M. E. Linskey i D. A. Bota. "Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy". Neurology 76, nr 13 (23.02.2011): 1126–34. http://dx.doi.org/10.1212/wnl.0b013e318212a89f.
Pełny tekst źródłaChamberlain, M. C., D. A. Bota, M. E. Linskey i P. H. Schwartz. "Neural Stem/Progenitors and Glioma Stem-Like Cells Have Differential Sensitivity to Chemotherapy". Neurology 77, nr 22 (28.11.2011): e135-e136. http://dx.doi.org/10.1212/wnl.0b013e318239ba7c.
Pełny tekst źródłaThomas, Jonathan G., Brittany C. Parker Kerrigan, Anwar Hossain, Joy Gumin, Naoki Shinojima, Felix Nwajei, Ravesanker Ezhilarasan, Patrice Love, Erik P. Sulman i Frederick F. Lang. "Ionizing radiation augments glioma tropism of mesenchymal stem cells". Journal of Neurosurgery 128, nr 1 (styczeń 2018): 287–95. http://dx.doi.org/10.3171/2016.9.jns16278.
Pełny tekst źródłaGorin, Fredric A., Nagarekha Pasupuleti, Dinesh Mahajan i Sundeep Dugar. "Killing Glioma ‘Stem-like’ Cells via Drug-Induced Relocation of Endosomal Urokinase Proteins". Anti-Cancer Agents in Medicinal Chemistry 17, nr 1 (styczeń 2017): 40–47. http://dx.doi.org/10.2174/1871520616666160628122901.
Pełny tekst źródłaKONG, BYUNG HO, HYUN-DO SHIN, SE-HOON KIM, HYUN-SU MOK, JIN-KYOUNG SHIM, JI-HYUN LEE, HYE-JIN SHIN i in. "Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma". International Journal of Oncology 42, nr 5 (12.03.2013): 1754–62. http://dx.doi.org/10.3892/ijo.2013.1856.
Pełny tekst źródła