Artykuły w czasopismach na temat „Glial scar formation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Glial scar formation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Perez-Gianmarco, Lucila, i Maria Kukley. "Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury". Cells 12, nr 14 (13.07.2023): 1842. http://dx.doi.org/10.3390/cells12141842.
Pełny tekst źródłaNicaise, Alexandra M., Andrea D’Angelo, Rosana-Bristena Ionescu, Grzegorz Krzak, Cory M. Willis i Stefano Pluchino. "The role of neural stem cells in regulating glial scar formation and repair". Cell and Tissue Research 387, nr 3 (25.11.2021): 399–414. http://dx.doi.org/10.1007/s00441-021-03554-0.
Pełny tekst źródłaBao, Yi, Luye Qin, Eunhee Kim, Sangram Bhosle, Hengchang Guo, Maria Febbraio, Renee E. Haskew-Layton, Rajiv Ratan i Sunghee Cho. "CD36 is Involved in Astrocyte Activation and Astroglial Scar Formation". Journal of Cerebral Blood Flow & Metabolism 32, nr 8 (18.04.2012): 1567–77. http://dx.doi.org/10.1038/jcbfm.2012.52.
Pełny tekst źródłaZHANG, H., K. UCHIMURA i K. KADOMATSU. "Brain Keratan Sulfate and Glial Scar Formation". Annals of the New York Academy of Sciences 1086, nr 1 (1.11.2006): 81–90. http://dx.doi.org/10.1196/annals.1377.014.
Pełny tekst źródłaRenault-Mihara, Francois, Masahiko Mukaino, Munehisa Shinozaki, Hiromi Kumamaru, Satoshi Kawase, Matthieu Baudoux, Toshiki Ishibashi i in. "Regulation of RhoA by STAT3 coordinates glial scar formation". Journal of Cell Biology 216, nr 8 (22.06.2017): 2533–50. http://dx.doi.org/10.1083/jcb.201610102.
Pełny tekst źródłaGoussev, Staci, Jung-Yu C. Hsu, Yong Lin, Tjoson Tjoa, Nino Maida, Zena Werb i Linda J. Noble-Haeusslein. "Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing". Journal of Neurosurgery: Spine 99, nr 2 (wrzesień 2003): 188–97. http://dx.doi.org/10.3171/spi.2003.99.2.0188.
Pełny tekst źródłaHu, Rong, Jianjun Zhou, Chunxia Luo, Jiangkai Lin, Xianrong Wang, Xiaoguang Li, Xiuwu Bian i in. "Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury". Journal of Neurosurgery: Spine 13, nr 2 (sierpień 2010): 169–80. http://dx.doi.org/10.3171/2010.3.spine09190.
Pełny tekst źródłaConrad, Sabine, Hermann J. Schluesener, Mehdi Adibzahdeh i Jan M. Schwab. "Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells". Journal of Neurosurgery: Spine 2, nr 3 (marzec 2005): 319–26. http://dx.doi.org/10.3171/spi.2005.2.3.0319.
Pełny tekst źródłaChen, Xuning, i Weiping Zhu. "A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury". Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3030454.
Pełny tekst źródłaGraboviy, O. M., T. S. Mervinsky, S. I. Savosko i L. M. Yaremenko. "Dynamics of changes in the representation of mesenchymal cells in the forming glial scar during dexamethasone application". Reports of Morphology 30, nr 3 (19.09.2024): 25–32. http://dx.doi.org/10.31393/morphology-journal-2024-30(3)-03.
Pełny tekst źródłaChung, Joonho, Moon Hang Kim, Yong Je Yoon, Kil Hwan Kim, So Ra Park i Byung Hyune Choi. "Effects of granulocyte colony–stimulating factor and granulocyte-macrophage colony–stimulating factor on glial scar formation after spinal cord injury in rats". Journal of Neurosurgery: Spine 21, nr 6 (grudzień 2014): 966–73. http://dx.doi.org/10.3171/2014.8.spine131090.
Pełny tekst źródłaOnodera, Junya, Yuji Ikegaya i Ryuta Koyama. "Involvement of microglial TRPV4 on glial scar formation". Proceedings for Annual Meeting of The Japanese Pharmacological Society 95 (2022): 1—P—020. http://dx.doi.org/10.1254/jpssuppl.95.0_1-p-020.
Pełny tekst źródłaSutin, Jerome, i Ronald Griffith. "β-Adrenergic Receptor Blockade Suppresses Glial Scar Formation". Experimental Neurology 120, nr 2 (kwiecień 1993): 214–22. http://dx.doi.org/10.1006/exnr.1993.1056.
Pełny tekst źródłaRooney, Gemma E., Toshiki Endo, Syed Ameenuddin, Bingkun Chen, Sandeep Vaishya, LouAnn Gross, Terry K. Schiefer i in. "Importance of the vasculature in cyst formation after spinal cord injury". Journal of Neurosurgery: Spine 11, nr 4 (październik 2009): 432–37. http://dx.doi.org/10.3171/2009.4.spine08784.
Pełny tekst źródłaClifford, Tanner, Zachary Finkel, Brianna Rodriguez, Adelina Joseph i Li Cai. "Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration". Cells 12, nr 6 (9.03.2023): 853. http://dx.doi.org/10.3390/cells12060853.
Pełny tekst źródłaLiu, Jingzhou, Xin Xin, Jiejie Sun, Yueyue Fan, Xun Zhou, Wei Gong, Meiyan Yang i in. "Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury". Neural Regeneration Research 19, nr 3 (20.07.2023): 629–35. http://dx.doi.org/10.4103/1673-5374.380907.
Pełny tekst źródłaSofroniew, Michael V. "Molecular dissection of reactive astrogliosis and glial scar formation". Trends in Neurosciences 32, nr 12 (grudzień 2009): 638–47. http://dx.doi.org/10.1016/j.tins.2009.08.002.
Pełny tekst źródłaWang, Haijun, Guobin Song, Haoyu Chuang, Chengdi Chiu, Ahmed Abdelmaksoud, Youfan Ye i Lei Zhao. "Portrait of glial scar in neurological diseases". International Journal of Immunopathology and Pharmacology 31 (styczeń 2018): 205873841880140. http://dx.doi.org/10.1177/2058738418801406.
Pełny tekst źródłaKorte, G. E., M. Marko i G. Hageman. "High-voltage electron microscopy of subretinal scar formation". Proceedings, annual meeting, Electron Microscopy Society of America 50, nr 1 (sierpień 1992): 486–87. http://dx.doi.org/10.1017/s0424820100122836.
Pełny tekst źródłaRodriguez-Grande, Beatriz, Matimba Swana, Loan Nguyen, Pavlos Englezou, Samaneh Maysami, Stuart M. Allan, Nancy J. Rothwell, Cecilia Garlanda, Adam Denes i Emmanuel Pinteaux. "The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury". Journal of Cerebral Blood Flow & Metabolism 34, nr 3 (18.12.2013): 480–88. http://dx.doi.org/10.1038/jcbfm.2013.224.
Pełny tekst źródłaCarvalho, Juliana Casanovas de, César Augusto Abreu-Pereira, Lucas Cauê da Silva Assunção, Rosana Costa Casanovas, Ana Lucia Abreu-Silva i Matheus Levi Tajra Feitosa. "Correlation of Nogo A release with glia scar formation in spinal cord injury". Research, Society and Development 10, nr 6 (29.05.2021): e25410615688. http://dx.doi.org/10.33448/rsd-v10i6.15688.
Pełny tekst źródłaLi, Xin, Yan Qian, Wanling Shen, Shiying Zhang, Hui Han, Yu Zhang, Shuangmei Liu, Shaokun Lv i Xiuying Zhang. "Mechanism of SET8 Activates the Nrf2-KEAP1-ARE Signaling Pathway to Promote the Recovery of Motor Function after Spinal Cord Injury". Mediators of Inflammation 2023 (10.03.2023): 1–13. http://dx.doi.org/10.1155/2023/4420592.
Pełny tekst źródłaBadan, I., B. Buchhold, A. Hamm, M. Gratz, L. C. Walker, D. Platt, Ch Kessler i A. Popa-Wagner. "Accelerated Glial Reactivity to Stroke in Aged Rats Correlates with Reduced Functional Recovery". Journal of Cerebral Blood Flow & Metabolism 23, nr 7 (lipiec 2003): 845–54. http://dx.doi.org/10.1097/01.wcb.0000071883.63724.a7.
Pełny tekst źródłaPekny, Milos, Clas B. Johansson, Camilla Eliasson, Josefina Stakeberg, Åsa Wallén, Thomas Perlmann, Urban Lendahl, Christer Betsholtz, Claes-Henric Berthold i Jonas Frisén. "Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin". Journal of Cell Biology 145, nr 3 (3.05.1999): 503–14. http://dx.doi.org/10.1083/jcb.145.3.503.
Pełny tekst źródłaWiemann, Susanne, Jacqueline Reinhard i Andreas Faissner. "Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation". Biochemical Society Transactions 47, nr 6 (17.12.2019): 1651–60. http://dx.doi.org/10.1042/bst20190081.
Pełny tekst źródłaHuang, Lijie, Zhe-Bao Wu, Qichuan ZhuGe, WeiMing Zheng, Bei Shao, Brian Wang, Fen Sun i Kunlin Jin. "Glial Scar Formation Occurs in the Human Brain after Ischemic Stroke". International Journal of Medical Sciences 11, nr 4 (2014): 344–48. http://dx.doi.org/10.7150/ijms.8140.
Pełny tekst źródłaBeach, Krista M., Jianbo Wang i Deborah C. Otteson. "Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina". Stem Cells International 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/1610691.
Pełny tekst źródłaOtte, Elisabeth, Andreas Vlachos i Maria Asplund. "Engineering strategies towards overcoming bleeding and glial scar formation around neural probes". Cell and Tissue Research 387, nr 3 (14.01.2022): 461–77. http://dx.doi.org/10.1007/s00441-021-03567-9.
Pełny tekst źródłaLi, Ping, Zhao-Qian Teng i Chang-Mei Liu. "Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury". Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1279051.
Pełny tekst źródłaCloutier, Frank, Ilse Sears-Kraxberger, Krista Keachie i Hans S. Keirstead. "Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis". Clinical and Developmental Immunology 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/812456.
Pełny tekst źródłaSaadoun, S. "Involvement of aquaporin-4 in astroglial cell migration and glial scar formation". Journal of Cell Science 118, nr 24 (15.12.2005): 5691–98. http://dx.doi.org/10.1242/jcs.02680.
Pełny tekst źródłaHsu, J. Y. C., L. Y. W. Bourguignon, C. M. Adams, K. Peyrollier, H. Zhang, T. Fandel, C. L. Cun, Z. Werb i L. J. Noble-Haeusslein. "Matrix Metalloproteinase-9 Facilitates Glial Scar Formation in the Injured Spinal Cord". Journal of Neuroscience 28, nr 50 (10.12.2008): 13467–77. http://dx.doi.org/10.1523/jneurosci.2287-08.2008.
Pełny tekst źródłaLeme, Ricardo José de Almeida, i Gerson Chadi. "Distant microglial and astroglial activation secondary to experimental spinal cord lesion". Arquivos de Neuro-Psiquiatria 59, nr 3A (wrzesień 2001): 483–92. http://dx.doi.org/10.1590/s0004-282x2001000400002.
Pełny tekst źródłaRobel, Stefanie. "Astroglial Scarring and Seizures". Neuroscientist 23, nr 2 (7.07.2016): 152–68. http://dx.doi.org/10.1177/1073858416645498.
Pełny tekst źródłaYeh, Jue-Zong, Ding-Han Wang, Juin-Hong Cherng, Yi-Wen Wang, Gang-Yi Fan, Nien-Hsien Liou, Jiang-Chuan Liu i Chung-Hsing Chou. "A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury". Polymers 12, nr 10 (29.09.2020): 2245. http://dx.doi.org/10.3390/polym12102245.
Pełny tekst źródłaHayashi, Noriko, Seiji Miyata, Yutaka Kariya, Ryo Takano, Saburo Hara i Kaeko Kamei. "Attenuation of glial scar formation in the injured rat brain by heparin oligosaccharides". Neuroscience Research 49, nr 1 (maj 2004): 19–27. http://dx.doi.org/10.1016/j.neures.2004.01.007.
Pełny tekst źródłaRomero-Ramírez, Lorenzo, Manuel Nieto-Sampedro i MAsunción Barreda-Manso. "All roads go to Salubrinal: endoplasmic reticulum stress, neuroprotection and glial scar formation". Neural Regeneration Research 10, nr 12 (2015): 1926. http://dx.doi.org/10.4103/1673-5374.169619.
Pełny tekst źródłaZhao, Lina, Xianyu Zhang i Chunhai Zhang. "Methimazole Inhibits the Expression of GFAP and the Migration of Astrocyte in Scratched Wound Model In Vitro". Mediators of Inflammation 2020 (13.04.2020): 1–7. http://dx.doi.org/10.1155/2020/4027470.
Pełny tekst źródłaSong, Byeong Gwan, Su Yeon Kwon, Jae Won Kyung, Eun Ji Roh, Hyemin Choi, Chang Su Lim, Seong Bae An, Seil Sohn i Inbo Han. "Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation". International Journal of Molecular Sciences 23, nr 11 (1.06.2022): 6218. http://dx.doi.org/10.3390/ijms23116218.
Pełny tekst źródłaSun, Daniel, i Tatjana C. Jakobs. "Structural Remodeling of Astrocytes in the Injured CNS". Neuroscientist 18, nr 6 (7.10.2011): 567–88. http://dx.doi.org/10.1177/1073858411423441.
Pełny tekst źródłaParry, Phillip V., i Johnathan A. Engh. "Promotion of Neuronal Recovery Following Experimental SCI via Direct Inhibition of Glial Scar Formation". Neurosurgery 70, nr 6 (czerwiec 2012): N10—N11. http://dx.doi.org/10.1227/01.neu.0000414941.18107.47.
Pełny tekst źródłaZhu, Yong-Ming, Xue Gao, Yong Ni, Wei Li, Thomas A. Kent, Shi-Gang Qiao, Chen Wang, Xiao-Xuan Xu i Hui-Ling Zhang. "Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia–reperfusion brain injury". Neuroscience 356 (lipiec 2017): 125–41. http://dx.doi.org/10.1016/j.neuroscience.2017.05.004.
Pełny tekst źródłaWang, Yu-Fu, Jia-Ning Zu, Jing Li, Chao Chen, Chun-Yang Xi i Jing-Long Yan. "Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation". Neuroscience Letters 560 (luty 2014): 51–56. http://dx.doi.org/10.1016/j.neulet.2013.11.050.
Pełny tekst źródłaUesugi, Masafumi, Yoshitoshi Kasuva, Hiroshi Hama, Tomoh Masaki i Katsutoshi Goto. "The Participation of Endogenous ET-1 in Glial Scar formation after Spinal Cord Injury". Japanese Journal of Pharmacology 73 (1997): 112. http://dx.doi.org/10.1016/s0021-5198(19)44953-6.
Pełny tekst źródłaOkuda, Akinori, Noriko Horii-Hayashi, Takayo Sasagawa, Takamasa Shimizu, Hideki Shigematsu, Eiichiro Iwata, Yasuhiko Morimoto i in. "Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats". Journal of Neurosurgery: Spine 26, nr 3 (marzec 2017): 388–95. http://dx.doi.org/10.3171/2016.8.spine16250.
Pełny tekst źródłaZhang, Rongyi, Junhua Wang, Qingwen Deng, Xingru Xiao, Xiang Zeng, Biqin Lai, Ge Li i in. "Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord". Neurospine 20, nr 4 (31.12.2023): 1358–79. http://dx.doi.org/10.14245/ns.2346824.412.
Pełny tekst źródłaPasterkamp, R. Jeroen, i Joost Verhaagen. "Semaphorins in axon regeneration: developmental guidance molecules gone wrong?" Philosophical Transactions of the Royal Society B: Biological Sciences 361, nr 1473 (28.07.2006): 1499–511. http://dx.doi.org/10.1098/rstb.2006.1892.
Pełny tekst źródłaZhang, Ce, Jianning Kang, Xiaodi Zhang, Ying Zhang, Nana Huang i Bin Ning. "Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury". Biomedicine & Pharmacotherapy 153 (wrzesień 2022): 113500. http://dx.doi.org/10.1016/j.biopha.2022.113500.
Pełny tekst źródłaLi, Yi, Jian Wu, Zhen-Yu Zhu, Zhi-Wei Fan, Ying Chen i Ri-Yun Yang. "Downregulation of EphB2 by RNA interference attenuates glial/fibrotic scar formation and promotes axon growth". Neural Regeneration Research 17, nr 2 (2022): 362. http://dx.doi.org/10.4103/1673-5374.317988.
Pełny tekst źródłaTysseling-Mattiace, V. M., V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp i J. A. Kessler. "Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury". Journal of Neuroscience 28, nr 14 (2.04.2008): 3814–23. http://dx.doi.org/10.1523/jneurosci.0143-08.2008.
Pełny tekst źródła