Gotowa bibliografia na temat „Glial scar formation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Glial scar formation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Glial scar formation"
Perez-Gianmarco, Lucila, i Maria Kukley. "Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury". Cells 12, nr 14 (13.07.2023): 1842. http://dx.doi.org/10.3390/cells12141842.
Pełny tekst źródłaNicaise, Alexandra M., Andrea D’Angelo, Rosana-Bristena Ionescu, Grzegorz Krzak, Cory M. Willis i Stefano Pluchino. "The role of neural stem cells in regulating glial scar formation and repair". Cell and Tissue Research 387, nr 3 (25.11.2021): 399–414. http://dx.doi.org/10.1007/s00441-021-03554-0.
Pełny tekst źródłaBao, Yi, Luye Qin, Eunhee Kim, Sangram Bhosle, Hengchang Guo, Maria Febbraio, Renee E. Haskew-Layton, Rajiv Ratan i Sunghee Cho. "CD36 is Involved in Astrocyte Activation and Astroglial Scar Formation". Journal of Cerebral Blood Flow & Metabolism 32, nr 8 (18.04.2012): 1567–77. http://dx.doi.org/10.1038/jcbfm.2012.52.
Pełny tekst źródłaZHANG, H., K. UCHIMURA i K. KADOMATSU. "Brain Keratan Sulfate and Glial Scar Formation". Annals of the New York Academy of Sciences 1086, nr 1 (1.11.2006): 81–90. http://dx.doi.org/10.1196/annals.1377.014.
Pełny tekst źródłaRenault-Mihara, Francois, Masahiko Mukaino, Munehisa Shinozaki, Hiromi Kumamaru, Satoshi Kawase, Matthieu Baudoux, Toshiki Ishibashi i in. "Regulation of RhoA by STAT3 coordinates glial scar formation". Journal of Cell Biology 216, nr 8 (22.06.2017): 2533–50. http://dx.doi.org/10.1083/jcb.201610102.
Pełny tekst źródłaGoussev, Staci, Jung-Yu C. Hsu, Yong Lin, Tjoson Tjoa, Nino Maida, Zena Werb i Linda J. Noble-Haeusslein. "Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing". Journal of Neurosurgery: Spine 99, nr 2 (wrzesień 2003): 188–97. http://dx.doi.org/10.3171/spi.2003.99.2.0188.
Pełny tekst źródłaHu, Rong, Jianjun Zhou, Chunxia Luo, Jiangkai Lin, Xianrong Wang, Xiaoguang Li, Xiuwu Bian i in. "Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury". Journal of Neurosurgery: Spine 13, nr 2 (sierpień 2010): 169–80. http://dx.doi.org/10.3171/2010.3.spine09190.
Pełny tekst źródłaConrad, Sabine, Hermann J. Schluesener, Mehdi Adibzahdeh i Jan M. Schwab. "Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells". Journal of Neurosurgery: Spine 2, nr 3 (marzec 2005): 319–26. http://dx.doi.org/10.3171/spi.2005.2.3.0319.
Pełny tekst źródłaChen, Xuning, i Weiping Zhu. "A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury". Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3030454.
Pełny tekst źródłaGraboviy, O. M., T. S. Mervinsky, S. I. Savosko i L. M. Yaremenko. "Dynamics of changes in the representation of mesenchymal cells in the forming glial scar during dexamethasone application". Reports of Morphology 30, nr 3 (19.09.2024): 25–32. http://dx.doi.org/10.31393/morphology-journal-2024-30(3)-03.
Pełny tekst źródłaRozprawy doktorskie na temat "Glial scar formation"
Manrique-Castaño, Daniel [Verfasser], Dirk Matthias [Gutachter] Hermann, Patrik [Gutachter] Krieger i Tracy D. [Gutachter] Farr. "Influence of the extracellular matrix protein Tenascin-C in the immune response, glial scar formation and ECM reorganization following cerebral ischemia in mice / Daniel Manrique-Castaño ; Gutachter: Dirk Matthias Hermann, Patrik Krieger, Tracy D. Farr ; International Graduate School of Neuroscience". Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1223176096/34.
Pełny tekst źródłaClain, Julien. "Impact des maladies métaboliques sur la cicatrice gliale, la plasticité cérébrale et la récupération fonctionnelle : exemple de l'accident vasculaire cérébral". Electronic Thesis or Diss., La Réunion, 2024. https://elgebar.univ-reunion.fr/login?url=http://thesesenligne.univ.run/24_13_J_CLAIN.pdf.
Pełny tekst źródłaIschemic stroke is the leading cause of death worldwide, with type II diabetes and obesity being significant risk factors. These metabolic diseases are particularly prevalent in Réunion Island, resulting in a higher incidence of stroke compared to the national average. Furthermore, diabetes and obesity worsen the outcomes of cerebral ischemia through unknown molecular and cellular mechanisms. During a stroke, cellular suffering and death trigger the activation of microglia (microgliosis) and astrocytes (astrogliosis), leading to the formation of a neuroprotective glial and fibrotic scar that isolates the damaged region from healthy brain tissue. However, this fibrosis can later hinder brain plasticity.Our research aimed to investigate the effects of metabolic disturbances on brain damage, reactive gliosis processes, fibrosis, and functional recovery in the context of stroke. For that, we induced cerebral ischemia in diabetic and obese mice (db/db model) and investigate the impact of their metabolic condition on reactive gliosis.Our findings clearly demonstrated that db/db mice exhibited an increased in lesion volume, cerebral oedema, hemorrhagic transformation, and blood-brain barrier dysfunction, in line with human clinical data. Furthermore, reactive gliosis and associated fibrosis were more severe and persistent in db/db mice. To identify the molecular and cellular mechanisms involved in astrogliosis during ischemic injury under disrupted metabolic conditions, we established several in vitro models: wound healing assay, oxygen and glucose deprivation (OGD), and treatment with agents mimicking some aspects of the metabolic dysfunction. Thus, astrocytes from the CLTT cell line were treated with methyglyoxal (MGO), a precursor of advanced glycation products which is elevated in diabetics. Our results clearly demonstrate that MGO treatment impairs the 'healing' process following mechanical injury. However, due to technical difficulties we were not able to draw any conclusions regarding the impact of MGO on astrocytic reactivity/healing in OGD condition. Finally, we tested the potential therapeutic effects of modulating the adiponectin pathway following cerebral ischemia in mice. However, our results showed no conclusive effects.In conclusion, our research provides compelling evidences that metabolic disturbances significantly exacerbate reactive gliosis and promote the persistence of fibrotic glial scarring in the ischemic hemisphere. Modulating glial scar and fibrosis may enhance brain repair mechanisms and functional recovery in both normoglycemic and hyperglycemic patients
Części książek na temat "Glial scar formation"
Logan, Ann, i Martin Berry. "Cellular and Molecular Determinants of Glial Scar Formation". W Advances in Experimental Medicine and Biology, 115–58. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0123-7_4.
Pełny tekst źródłaFrontczak-Baniewicz, Malgorzata, Lidia Strużynska, Jaroslaw Andrychowski, Jolanta Opertowska, Dorota Sulejczak i Michal Walski. "Ultrastructural and Immunochemical Studies of Glial Scar Formation in Diabetic Rats". W Brain Edema XIV, 251–55. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-98811-4_47.
Pełny tekst źródłaPilkinton, Sophie, T. J. Hollingsworth, Brian Jerkins i Monica M. Jablonski. "An Overview of Glaucoma: Bidirectional Translation between Humans and Pre-Clinical Animal Models". W Animal Models in Medicine and Biology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97145.
Pełny tekst źródłaRodrígez-Barrera, Roxana, Adrián Flores-Romero, Julián García-Sánchez, Lisset Karina Navarro-Torres, Marcela Garibay-López i Elisa García-Vences. "Cytokines in Scar Glial Formation after an Acute and Chronic Spinal Cord Injury". W Cytokines. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93005.
Pełny tekst źródłaLucchinetti, C., i H. Lassmann. "The Neuropathology of Multiple Sclerosis". W Glial Cell Development basic principles and clinical relevance second edition, 379–400. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198524786.003.0018.
Pełny tekst źródłaEl-Mansoury, Bilal, Kamal Smimih, Youssef Ait Hamdan, Ahmed Draoui, Samira Boulbaroud i Arumugam Radhakrishnan Jayakumar. "Microglial Cells Function in the Central Nervous System". W Physiology and Function of Glial Cells in Health and Disease, 60–82. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9675-6.ch004.
Pełny tekst źródłaStreszczenia konferencji na temat "Glial scar formation"
Bernick, Kristin B., i Simona Socrate. "Substrate Dependence of Mechanical Response of Neurons and Astrocytes". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53538.
Pełny tekst źródła